Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Measurement rate applications

The theory of rate measurements by electrochemistry is mathematically quite difficult, although the experimental measurements are straightforward. The techniques are widely applicable, because conditions can be found for which most compounds are electroactive. However, many questionable kinetic results have been reported, and some of these may be a consequence of unsuitable approximations in applying theory. Another consideration is that these methods are mainly applicable to aqueous solutions at high ionic strengths and that the reactions being observed are not bulk phase reactions but are taking place in a layer of molecular dimensions near the electrode surface. Despite such limitations, useful kinetic results have been obtained. [Pg.183]

Innumerable experimental rate measurements of many kinds have been shown to obey the Arrhenius equation (18) or the modified form [k = A T exp (—E/RT)] and, irrespective of any physical significance of the parameters A and E, the approach is an important, established method of reporting and comparing kinetic data. There are, however, grounds for a critical reconsideration for both the methods of application and the theoretical interpretations of observed obedience of experimental data for the reactions of solids to eqn. (18). [Pg.87]

The simplest solid—solid reactions are those involving two solid reactants and a single barrier product phase. The principles used in interpreting the results of kinetic studies on such systems, and which have been described above, can be modified for application to more complex systems. Many of these complex systems have been resolved into a series of interconnected binary reactions and some of the more fully characterized examples have already been mentioned. While certain of these rate processes are of considerable technological importance, e.g. to the cement industry [1], the difficulties of investigation are such that few quantitative kinetic studies have been attempted. Attention has more frequently been restricted to the qualitative identifications of intermediate and product phases, or, at best, empirical rate measurements for technological purposes. [Pg.282]

Ton-molecule reactions are of great interest and importance in all areas of kinetics where ions are involved in the chemistry of the system. Astrophysics, aeronomy, plasmas, and radiation chemistry are examples of such systems in which ion chemistry plays a dominant role. Mass spectrometry provides the technique of choice for studying ion-neutral reactions, and the phenomena of ion-molecule reactions are of great intrinsic interest to mass spectrometry. However, equal emphasis is deservedly placed on measuring reaction rates for application to other systems. Furthermore, the energy dependence of ion-molecule reaction rates is of fundamental importance in assessing the validity of current theories of ion-molecule reaction rates. Both the practical problem of deducing rate parameters valid for other systems and the desire to provide input to theoretical studies of ion-molecule reactions have served as stimuli for the present work. [Pg.113]

In order for an experimental test of the kinetic behaviour to be as informative as possible, the system investigated should fulfil various specific requirements. From the experimental point of view, the reaction should cause a minimum of change in the reaction medium and be without side-reactions as far as possible, in order for accurate and well-defined rate measurements to be feasible. For the same reason an accOTate physical method which can be applied without distiubing the reacting system is to be preferred. From the theoretical point of view, it is desirable that the steric effects play as important a role in the reaction as possible, because only then is a sizeable effect to be expected. Finally, a transition state of well-known conformation is a necessary prerequisite for the quantitative application of the theory. [Pg.4]

Diffusion through a product layer can be treated like a film resistance. The surface concentration is measured inside the ash layer at the unbumed surface of the particle. If the ash thickness is constant and as 0, then the rate has the form of Equation (11.48). The ash thickness will probably increase with time, and this will cause the rate constant applicable to a single particle to gradually decline with time. [Pg.420]

The control of insects is no easy or simple task. Even for those species that are well known and for which control measures are fairly standardized, many things have to be considered. In cases where the suitable insecticide is known, there is need for accuracy in using the correct concentration and rate of application. That is usually the simplest part of the operation. Timing the application may mean the difference between success and... [Pg.10]

Tables 14.6, 14.7, 14.8, 14.9 and 14.10 provide further insight into the comparative properties and toxicity of pesticides applied on organic and conventional farms to treat a given type of pest. Table 14.6 lists the primary pesticides approved for use on organic farms and their uses and target pests. Tables 14.7-14.10 again list the major organic pesticides, along with two or three conventional pesticide alternatives that are used by conventional farmers to manage the same pest problems. Tables 14.7 and 14.8 summarize the rates of application of these pesticides, while Tables 14.9 and 14.10 focus on relative measures of toxicity to mammals and other organisms. Tables 14.6, 14.7, 14.8, 14.9 and 14.10 provide further insight into the comparative properties and toxicity of pesticides applied on organic and conventional farms to treat a given type of pest. Table 14.6 lists the primary pesticides approved for use on organic farms and their uses and target pests. Tables 14.7-14.10 again list the major organic pesticides, along with two or three conventional pesticide alternatives that are used by conventional farmers to manage the same pest problems. Tables 14.7 and 14.8 summarize the rates of application of these pesticides, while Tables 14.9 and 14.10 focus on relative measures of toxicity to mammals and other organisms.
A modern and very exact method of growth rate measurements is the laser-scanner. The disadvantage of this method is, that it can only be used on the outside of tubes. In the industrial application the disadvantage is that by this method only one tube of a bundle of tubes can be measured at a time. [Pg.216]

In 1985, Ruzicka and Hansen established the principles behind flow injection optosensing [13-15], which has subsequently been used for making reaction-rate measurements [16], pH measurements by means of immobilized indicators [17,18], enzyme assays [19], solid-phase analyte preconcentration by sorbent extraction [20] and even anion determinations by catalysed reduction of a solid phase [21] —all these applications are discussed in Chapters 3 and 4. Incorporation of a gas-diffusion membrane in this type of sensor results in substantially improved sensitivity (through preconcentration) and selectivity (through removal of non-volatile interferents). The first model sensor of this type was developed for the determination of ammonium [13] and later refined by Hansen et al. [22,23] for successful application to clinical samples. [Pg.271]

GPC is a promising method for examination of template polymerization, especially copolymerization. Copolymerization of methacrylic acid with methyl methacrylate in the presence of polyCdimethylaminoethyl methacrylate) can be selected as an example of GPC application for examination of template processes. The process was carried out in tetrahydrofurane as solvent at 65°C. After proper time of polymerization, the samples were cooled, diluted by THF, filtered, and injected to GPC columns. Two detectors on line UV and differential refractometer, DRI, were applied. UV detector was used to measure concentration of two monomers, while the template was recorded by DRI detector (Figure 11.3) The decrease in concentration ofboth monomers can be measured separately. It was found that a big difference in the rate of polymerization between template process and blank polymerization exists. The rate measured separately for methacrylic acid (decrease of concentration of methacrylic acid in monomers mixture) was much higher in the template process. Furthermore, the ratio ofboth monomers changes in a different manner. Reactivity ratios for both monomers can be computed. Decrease in concentration during the process is shown in Figure 11.4. [Pg.138]

Nuclear magnetic resonance (NMR) spectroscopy is a most effective and significant method for observing the structure and dynamics of polymer chains both in solution and in the solid state [1]. Undoubtedly the widest application of NMR spectroscopy is in the field of structure determination. The identification of certain atoms or groups in a molecule as well as their position relative to each other can be obtained by one-, two-, and three-dimensional NMR. Of importance to polymerization of vinyl monomers is the orientation of each vinyl monomer unit to the growing chain tacticity. The time scale involved in NMR measurements makes it possible to study certain rate processes, including chemical reaction rates. Other applications are isomerism, internal relaxation, conformational analysis, and tautomerism. [Pg.83]

Various methods are used to examine the viscosity characteristics of metallized gels. Two types that have received extensive application are the cone and plate viscometer and the capillary viscometer. Both instruments can measure rheological characteristics at high shear rates, and the former is useful for low shear rate measurements as well. [Pg.360]

Leach rate measurements have been made on several waste forms, using the NAA technique. Some results are presented here as examples of the application of this method. Simulated wastes used in these studies consisted of two types of granules obtained from Battelle Pacific Northwest Laboratories. The differential leach rates of the bulk waste matrix were calculated with the equation ... [Pg.122]

A further application of relaxation rate measurements is that similar 1/71 ratios in a series of lanthanide complexes may be taken to indicate an isostructural series. However, this approach has the limitation that if only part of the complex is studied, perhaps an organic ligand, its 71 ratios would be independent of changes, for example changes in the extent of hydration in the remainder of the complex, provided that the conformation of the ligand relative to the lanthanide ion were preserved. An excellent example of the use of 71 data in a quite different way is its use to determine hydration numbers of lanthanide dipicolinate complexes.562... [Pg.1103]

A variety of experimental techniques have been used for the determination of uptake coefficients and especially Knudsen cells and flow tubes have found most application [42]. Knudsen cells are low-pressure reactors in which the rate of interaction with the surface (solid or liquid) is measured relative to the escape through an aperture, which can readily be calibrated, thus putting the gas-surface rate measurement on an absolute basis. Usually, a mass spectrometer detection system monitors the disappearance of reactant species, as well as the appearance of gas-phase products. The timescale of Knudsen cell experiments ranges from a few seconds to h lindens of seconds. A description of Knudsen cell applied to low temperature studies is given [66,67]. [Pg.272]


See other pages where Measurement rate applications is mentioned: [Pg.763]    [Pg.619]    [Pg.157]    [Pg.62]    [Pg.94]    [Pg.98]    [Pg.153]    [Pg.407]    [Pg.72]    [Pg.949]    [Pg.950]    [Pg.954]    [Pg.270]    [Pg.263]    [Pg.804]    [Pg.150]    [Pg.93]    [Pg.33]    [Pg.229]    [Pg.85]    [Pg.214]    [Pg.205]    [Pg.234]    [Pg.251]    [Pg.214]    [Pg.20]    [Pg.804]    [Pg.23]    [Pg.188]    [Pg.477]    [Pg.132]    [Pg.90]    [Pg.351]    [Pg.117]    [Pg.72]   


SEARCH



Application of rate measurements

Application rates

Application rates direct release measurement

Measuring rate

Rate measurement

Surface diffusion rates, measurement applications

© 2024 chempedia.info