Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rate constants substitution

Everything in this equation is known but the two rate constants. Substituting the known quantities for each run gives a pair of simultaneous equations ... [Pg.130]

Step 2 To find the value of the rate constant, substitute data from any of the three experiments into the rate law equation. Using the data from experiment 1 gives the following equation. [Pg.283]

For the simplest carboxylic acid, formic acid, this latter step leads to H + CO2. The reaction of S04 with acetate, however, leads predominately to decarboxylation 193]. Rate constants for the reactions of acetate 196] and several halo-genated acetates [97] have been measured, Substitution of a single chlorine or fluorine for a hydrogen makes little difference in the rate constant. Substitution of two chlorines reduces the rate constant by a factor of two, while two fluorines reduce it by a factor of 50. Three fluorines lower the rate constant by almost 3(X) the effect of three chlorines is significant, but uncertain. [Pg.86]

Hammen equation A correlation between the structure and reactivity in the side chain derivatives of aromatic compounds. Its derivation follows from many comparisons between rate constants for various reactions and the equilibrium constants for other reactions, or other functions of molecules which can be measured (e g. the i.r. carbonyl group stretching frequency). For example the dissociation constants of a series of para substituted (O2N —, MeO —, Cl —, etc.) benzoic acids correlate with the rate constant k for the alkaline hydrolysis of para substituted benzyl chlorides. If log Kq is plotted against log k, the data fall on a straight line. Similar results are obtained for meta substituted derivatives but not for orthosubstituted derivatives. [Pg.199]

Breslow studied the dimerisation of cyclopentadiene and the reaction between substituted maleimides and 9-(hydroxymethyl)anthracene in alcohol-water mixtures. He successfully correlated the rate constant with the solubility of the starting materials for each Diels-Alder reaction. From these relations he estimated the change in solvent accessible surface between initial state and activated complex " . Again, Breslow completely neglects hydrogen bonding interactions, but since he only studied alcohol-water mixtures, the enforced hydrophobic interactions will dominate the behaviour. Recently, also Diels-Alder reactions in dilute salt solutions in aqueous ethanol have been studied and minor rate increases have been observed Lubineau has demonstrated that addition of sugars can induce an extra acceleration of the aqueous Diels-Alder reaction . Also the effect of surfactants on Diels-Alder reactions has been studied. This topic will be extensively reviewed in Chapter 4. [Pg.26]

In Chapter 2 the Diels-Alder reaction between substituted 3-phenyl-l-(2-pyridyl)-2-propene-l-ones (3.8a-g) and cyclopentadiene (3.9) was described. It was demonstrated that Lewis-acid catalysis of this reaction can lead to impressive accelerations, particularly in aqueous media. In this chapter the effects of ligands attached to the catalyst are described. Ligand effects on the kinetics of the Diels-Alder reaction can be separated into influences on the equilibrium constant for binding of the dienoplule to the catalyst (K ) as well as influences on the rate constant for reaction of the complex with cyclopentadiene (kc-ad (Scheme 3.5). Also the influence of ligands on the endo-exo selectivity are examined. Finally, and perhaps most interestingly, studies aimed at enantioselective catalysis are presented, resulting in the first example of enantioselective Lewis-acid catalysis of an organic transformation in water. [Pg.82]

The results in table 2.6 show that the rates of reaction of compounds such as phenol and i-napthol are equal to the encounter rate. This observation is noteworthy because it shows that despite their potentially very high reactivity these compounds do not draw into reaction other electrophiles, and the nitronium ion remains solely effective. These particular instances illustrate an important general principle if by increasing the reactivity of the aromatic reactant in a substitution reaction, a plateau in rate constant for the reaction is achieved which can be identified as the rate constant for encounter of the reacting species, and if further structural modifications of the aromatic in the direction of further increasing its potential reactivity ultimately raise the rate constant above this plateau, then the incursion of a new electrophile must be admitted. [Pg.29]

The relative basicities of aromatic hydrocarbons, as represented by the equilibrium constants for their protonation in mixtures of hydrogen fluoride and boron trifluoride, have been measured. The effects of substituents upon these basicities resemble their effects upon the rates of electrophilic substitutions a linear relationship exists between the logarithms of the relative basicities and the logarithms of the relative rate constants for various substitutions, such as chlorination and... [Pg.113]

A plot against Hammett s cr-constants of the logarithms of the rate constants for the solvolysis of a series of Mz-substituted dimethylphenylcarbinyl chlorides, in which compounds direct resonance interaction with the substituent is not possible, yielded a reasonably straight line and gave a value for the reaction constant (p) of — 4 54. Using this value of the reaction constant, and with the data for the rates of solvolysis, a new set of substituent parameters (cr+) was defined. The procedure described above for the definition of cr+, was adopted for... [Pg.138]

Nucleophilic reactivity of the sulfur atom has received most attention. When neutral or very acidic medium is used, the nucleophilic reactivity occurs through the exocyclic sulfur atom. Kinetic studies (110) measure this nucleophilicity- towards methyl iodide for various 3-methyl-A-4-thiazoline-2-thiones. Rate constants are 200 times greater for these compounds than for the isomeric 2-(methylthio)thiazole. Thus 3-(2-pyridyl)-A-4-thiazoline-2-thione reacts at sulfur with methyl iodide (111). Methyl substitution on the ring doubles the rate constant. This high reactivity at sulfur means that, even when an amino (112, 113) or imino group (114) occupies the 5-position of the ring, alkylation takes place on sulfiu. For the same reason, 2-acetonyi derivatives are sometimes observed as by-products in the heterocyclization reaction of dithiocarba-mates with a-haloketones (115, 116). [Pg.391]

The effect of alkyl groups in the 5-position on the reactivity of the thiazole nitrogen is analogous to that found for 3-alkylpyridines, in other words, a simple inductive effect. In passing from the unsubstituted heterocycle to the methyl derivative, the rate constant doubles a further increase in substitution produces a much less pronounced variation. [Pg.390]

Solvent Effects on the Rate of Substitution by the S l Mechanism Table 8 6 lists the relative rate of solvolysis of tert butyl chloride m several media m order of increasing dielectric constant (e) Dielectric constant is a measure of the ability of a material m this case the solvent to moderate the force of attraction between oppositely charged par tides compared with that of a standard The standard dielectric is a vacuum which is assigned a value e of exactly 1 The higher the dielectric constant e the better the medium is able to support separated positively and negatively charged species 8olvents... [Pg.345]

Ratio of second order rate constant for substitution in indicated solvent to that for substitution in methanol at 25 C... [Pg.347]

Rate increases with increasing po larity of solvent as measured by its dielectric constant e (Section 8 12) Polar aprotic solvents give fastest rates of substitution solvation of Nu IS minimal and nucleophilicity IS greatest (Section 8 12)... [Pg.356]

The value for the pseudo-first-order rate constant is determined by solving equation 13.6 for k and making appropriate substitutions thus... [Pg.626]

The value of the rate constant can be determined by substituting the rate, the [C3H5O], and the [H+] for an experiment into the rate law and solving for k. Using the data from experiment 1, for example, gives a rate constant of 3.31 X 10 s h The average rate constant for the eight experiments is 3.49 X 10-5 M-i s-i ... [Pg.754]

If the rate constant kj is comparable to kp, the substitution of a polymer radical with a new radical has little or no effect on the rate of polymerization. If kj hp, the rate of polymerization will be decreased by chain transfer. [Pg.389]

Droplet trajectories for limiting cases can be calculated by combining the equations of motion with the droplet evaporation rate equation to assess the likelihood that drops exit or hit the wall before evaporating. It is best to consider upper bound droplet sizes in addition to the mean size in these calculations. If desired, an instantaneous value for the evaporation rate constant may also be used based on an instantaneous Reynolds number calculated not from the terminal velocity but at a resultant velocity. In this case, equation 37 is substituted for equation 32 ... [Pg.57]

Complexes of Ir(III) are kineticaHy inert and undergo octahedral substitution reactions slowly. The rate constant for aquation of prBr(NH3)3] " [35884-02-7] at 298 K has been measured at 2 x 10 ° (168). In many cases, addition of a catalytic reducing agent such as hypophosphorous acid... [Pg.181]

For both azole and benzazole rings the introduction of further heteroatoms into the ring affects the ease of quaternization. In series with the same number and orientation of heteroatoms, rate constants increase in the order X = 0requires stronger reagents and conditions methyl fluorosulfonate is sometimes used (78AHC(22)71). The 1-or 2-substituted 1,2,3-triazoles are difficult to alkylate, but methyl fluorosulfonate succeeds (7IACS2087). [Pg.52]

In a neutral azole, the apparent rate of formation of an A-substituted derivative depends on the rate of reaction of a given tautomer and on the tautomeric equilibrium constant. For example, with a 3(5)-substituted pyrazole such as (199), which exists as a mixture of two tautomers (199a) and (199b) in equilibrium, the product composition [(200)]/[(201)] is a function of the rate constants Ha and fcs, as well as of the composition of the tautomeric mixture (Scheme 16) <76AHC(Si)l). [Pg.222]

Fig. 14. Energy-gap dependence of the rate constant of intersystem ST conversion for 1. aromatic hydrocarbons and 2. their totally deuterated substitutes. Fig. 14. Energy-gap dependence of the rate constant of intersystem ST conversion for 1. aromatic hydrocarbons and 2. their totally deuterated substitutes.
Substitution of this for the golden-rule expression (1.14) together with the renormalized tunneling matrix element from (5.60) gives (5.64), after thermally averaging over the initial energies E-,. In the biased case the expression for the forward rate constant is... [Pg.87]

Sethna [1981] considered two limiting cases. The calculation of action in the fast flip approximation (a>j CO ) proceeds by utilizing the expansion exp ( — cu,-1t ) 1 — cu t. After substituting the first term, i.e. the unity, in (5.72) we get precisely the quantity which yields the Franck-Condon factor in the rate constant. The next term cancels the adiabatic renormalization and changes KM)... [Pg.89]

As stated by inequality (2.81) (see also section 4.2 and fig. 30), when the tunneling mass grows, the tunneling regime tends to be adiabatic, and the extremal trajectory approaches the MEP. The transition can be thought of as a one-dimensional tunneling in the vibrationally adiabatic barrier (1.10), and an estimate of and can be obtained on substitution of the parameters of this barrier in the one-dimensional formulae (2.6) and (2.7). The rate constant falls into the interval available for measurements if, as the mass m is increased, the barrier parameters are decreased so that the quantity d(Vom/mn) remains approximately invariant. [Pg.128]


See other pages where Rate constants substitution is mentioned: [Pg.633]    [Pg.295]    [Pg.384]    [Pg.222]    [Pg.366]    [Pg.74]    [Pg.472]    [Pg.132]    [Pg.189]    [Pg.78]    [Pg.252]    [Pg.633]    [Pg.295]    [Pg.384]    [Pg.222]    [Pg.366]    [Pg.74]    [Pg.472]    [Pg.132]    [Pg.189]    [Pg.78]    [Pg.252]    [Pg.1923]    [Pg.712]    [Pg.215]    [Pg.210]    [Pg.232]    [Pg.347]    [Pg.637]    [Pg.508]    [Pg.295]    [Pg.113]    [Pg.204]   
See also in sourсe #XX -- [ Pg.426 ]




SEARCH



Axial substitution rate constants

Dielectric constant and rate of nucleophilic substitution

Ligand substitution rate constant

Nucleophile-substituted carbocation reactions, estimated rate constants

Rate constant for substitution reactions

Rate constants derived from substituted aromatic

Substitution rate constants for

Substitution rates

Substitution reactions rate constants

© 2024 chempedia.info