Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rare earths processes

A special technique was developed for rare-earth samples in which rapid hydration and carbonation occurred. The rare-earth oxalates were found to be more stable than the oxides and were used as sample material. In the rare-earth processing procedures that include an oxalate precipitate, the oxalate can be used as sample material. The advantages are that no diluent is required, weighing is eliminated, and recovery of the rare earths is simplified. [Pg.206]

Continual progress in rare-earth processing has reduced the radioactive impurities in rare-earth products substantially, so they are practically free of radioactivity today. Current processing technology for mineral recovery and for the subsequent lanthanide separation results in products that meet all regulatory requirements. [Pg.21]

The element was discovered by Nilson in 1878 in the minerals euxenite and gadolinite, which had not yet been found anywhere except in Scandinavia. By processing 10 kg of euxenite and other residues of rare-earth minerals, Nilson was able to prepare about 2g of highly pure scandium oxide. Later scientists pointed out that Nilson s scandium was idenhcal with Mendeleev s ekaboron. [Pg.49]

Other Metals. Because of the large number of chemical extractants available, virtually any metal can be extracted from its aqueous solution. In many cases extraction has been developed to form part of a viable process (275). A review of more recent developments in metal extraction including those for precious metals and rare earths is also available (262). In China a complex extraction process employing a cascade of 600 mixer—settlers has been developed to treat leach Hquor containing a mixture of rare earths (131). [Pg.81]

Apatite and other phosphorites constitute a substantial resource of rare earths. The REO content is highly variable and ranges from trace amounts to over 1%. Apatite- [1306-05-4] rich tailings of the iron ore at Mineville, New York, have been considered a potential source of yttrium and lanthanides. Rare-earth-rich apatites are found at the Kola Peninsula, Russia, and the Phalaborwa complex in South Africa. In spite of low REO content apatites could become an important source of rare earths because these are processed in large quantities for the manufacturing of fertilisers (qv). [Pg.543]

Mona.Zlte, The commercial digestion process for m on a site uses caustic soda. The phosphate content of the ore is recovered as marketable trisodium phosphate and the rare earths as RE hydroxide (10). The usual industrial practice is to attack finely ground m on a site using a 50% sodium hydroxide solution at 150°C or a 70% sodium hydroxide solution at 180°C. The resultant mixed rare-earth and thorium hydroxide cake is dissolved in hydrochloric or nitric acid, then processed to remove thorium and other nonrare-earth elements, and processed to recover the individual rare earths (see... [Pg.543]

Opa.nte. There are two methods used at various plants in Russia for loparite concentrate processing (12). The chlorination technique is carried out using gaseous chlorine at 800°C in the presence of carbon. The volatile chlorides are then separated from the calcium—sodium—rare-earth fused chloride, and the resultant cake dissolved in water. Alternatively, sulfuric acid digestion may be carried out using 85% sulfuric acid at 150—200°C in the presence of ammonium sulfate. The ensuing product is leached with water, while the double sulfates of the rare earths remain in the residue. The titanium, tantalum, and niobium sulfates transfer into the solution. The residue is converted to rare-earth carbonate, and then dissolved into nitric acid. [Pg.543]

Separation Processes. The product of ore digestion contains the rare earths in the same ratio as that in which they were originally present in the ore, with few exceptions, because of the similarity in chemical properties. The various processes for separating individual rare earth from naturally occurring rare-earth mixtures essentially utilize small differences in acidity resulting from the decrease in ionic radius from lanthanum to lutetium. The acidity differences influence the solubiUties of salts, the hydrolysis of cations, and the formation of complex species so as to allow separation by fractional crystallization, fractional precipitation, ion exchange, and solvent extraction. In addition, the existence of tetravalent and divalent species for cerium and europium, respectively, is useful because the chemical behavior of these ions is markedly different from that of the trivalent species. [Pg.543]

Liquid—Liquid Extraction. The tiquid—tiquid extraction process for the rare-earth separation was discovered by Fischer (14). Extraction of REE using an alcohol, ether, or ketone gives separation factors of up to 1.5. The selectivity of the distribution of two rare-earth elements, REI and RE2, between two nonmiscible tiquid phases is given by the ratio of the distribution coefficients DI and D2 ... [Pg.544]

Another characteristic of the solvent extraction system is the high solute concentration in both aqueous and organic phases, which influences greatly the size of the required installation. Concentrations of rare-earth oxides (REO) higher than 100 g/L are often reached in both phases. The process therefore requires only relatively small equipment. [Pg.544]

Re OPe . The final step in the chemical processing of rare earths depends on the intended use of the product. Rare-earth chlorides, usually electrolytically reduced to the metallic form for use in metallurgy, are obtained by crystallisation of aqueous chloride solutions. Rare-earth fluorides, used for electrolytic or metaHothermic reduction, are obtained by precipitation with hydrofluoric acid. Rare-earth oxides are obtained by firing hydroxides, carbonates or oxalates, first precipitated from the aqueous solution, at 900°C. [Pg.546]

In order to make an efficient Y202 Eu ", it is necessary to start with weU-purifted yttrium and europium oxides or a weU-purifted coprecipitated oxide. Very small amounts of impurity ions, particularly other rare-earth ions, decrease the efficiency of this phosphor. Ce " is one of the most troublesome ions because it competes for the uv absorption and should be present at no more than about one part per million. Once purified, if not already coprecipitated, the oxides are dissolved in hydrochloric or nitric acid and then precipitated with oxaflc acid. This precipitate is then calcined, and fired at around 800°C to decompose the oxalate and form the oxide. EinaHy the oxide is fired usually in air at temperatures of 1500—1550°C in order to produce a good crystal stmcture and an efficient phosphor. This phosphor does not need to be further processed but may be milled for particle size control and/or screened to remove agglomerates which later show up as dark specks in the coating. [Pg.290]

Other Metals. AH the sodium metal produced comes from electrolysis of sodium chloride melts in Downs ceUs. The ceU consists of a cylindrical steel cathode separated from the graphite anode by a perforated steel diaphragm. Lithium is also produced by electrolysis of the chloride in a process similar to that used for sodium. The other alkaH and alkaHne-earth metals can be electrowon from molten chlorides, but thermochemical reduction is preferred commercially. The rare earths can also be electrowon but only the mixture known as mischmetal is prepared in tonnage quantity by electrochemical means. In addition, beryIHum and boron are produced by electrolysis on a commercial scale in the order of a few hundred t/yr. Processes have been developed for electrowinning titanium, tantalum, and niobium from molten salts. These metals, however, are obtained as a powdery deposit which is not easily separated from the electrolyte so that further purification is required. [Pg.175]

Oxahc acid is used in various industrial areas, such as textile manufacture and processing, metal surface treatments (qv), leather tanning, cobalt production, and separation and recovery of rare-earth elements. Substantial quantities of oxahc acid are also consumed in the production of agrochemicals, pharmaceuticals, and other chemical derivatives. [Pg.455]

Separation and Recovery of Rare-Earth Elements. Because rare-earth oxalates have low solubihty in acidic solutions, oxaUc acid is used for the separation and recovery of rare-earth elements (65). For the decomposition of rare-earth phosphate ores, such as mona ite and xenotime, a wet process using sulfuric acid has been widely employed. There is also a calcination process using alkaLine-earth compounds as a decomposition aid (66). In either process, rare-earth elements are recovered by the precipitation of oxalates, which are then converted to the corresponding oxides. [Pg.462]

Protonic initiation is also the end result of a large number of other initiating systems. Strong acids are generated in situ by a variety of different chemistries (6). These include initiation by carbenium ions, eg, trityl or diazonium salts (151) by an electric current in the presence of a quartenary ammonium salt (152) by halonium, triaryl sulfonium, and triaryl selenonium salts with uv irradiation (153—155) by mercuric perchlorate, nitrosyl hexafluorophosphate, or nitryl hexafluorophosphate (156) and by interaction of free radicals with certain metal salts (157). Reports of "new" initiating systems are often the result of such secondary reactions. Other reports suggest standard polymerization processes with perhaps novel anions. These latter include (Tf)4Al (158) heteropoly acids, eg, tungstophosphate anion (159,160) transition-metal-based systems, eg, Pt (161) or rare earths (162) and numerous systems based on tri flic acid (158,163—166). Coordination polymerization of THF may be in a different class (167). [Pg.362]

Other THF polymerization processes that have been disclosed in papers and patents, but which do not appear to be in commercial use in the 1990s, include catalysis by boron trifluoride complexes in combination with other cocatalysts (241—245), modified montmorrillonite clay (246—248) or modified metal oxide composites (249), rare-earth catalysts (250), triflate salts (164), and sulfuric acid or Aiming sulfuric acid with cocatalysts (237,251—255). [Pg.365]


See other pages where Rare earths processes is mentioned: [Pg.886]    [Pg.933]    [Pg.462]    [Pg.3006]    [Pg.5588]    [Pg.24]    [Pg.212]    [Pg.886]    [Pg.933]    [Pg.462]    [Pg.3006]    [Pg.5588]    [Pg.24]    [Pg.212]    [Pg.878]    [Pg.1547]    [Pg.198]    [Pg.351]    [Pg.75]    [Pg.80]    [Pg.249]    [Pg.335]    [Pg.335]    [Pg.412]    [Pg.144]    [Pg.539]    [Pg.540]    [Pg.542]    [Pg.543]    [Pg.543]    [Pg.544]    [Pg.544]    [Pg.457]    [Pg.423]    [Pg.539]    [Pg.540]    [Pg.326]    [Pg.405]    [Pg.42]    [Pg.210]   
See also in sourсe #XX -- [ Pg.198 , Pg.199 , Pg.200 , Pg.201 , Pg.202 , Pg.203 ]




SEARCH



© 2024 chempedia.info