Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Random copolymers examples

Table 2. Examples of Random Copolymers That Form Miscible Blends with Other Polymers When Corresponding Homopolymers Do Not... Table 2. Examples of Random Copolymers That Form Miscible Blends with Other Polymers When Corresponding Homopolymers Do Not...
There are many examples known where a random copolymer Al, comprised of monomers 1 and 2, is miscible with a homopolymer B, comprised of monomer 3, even though neither homopolymer 1 or 2 is miscible with homopolymer 3, as illustrated by Table 2. The binary interaction model offers a relatively simple explanation for the increased likelihood of random copolymers forming miscible blends with other polymers. The overall interaction parameter for such blends can be shown (eg, by simplifying eq. 8) to have the form of equation 9 (133—134). [Pg.412]

Postpolymerization Reactions. Copolymers can also be formed by postpolymetization reactions on polymers. A well-known example is the partial hydrolysis of polyacrjiamide (PAM) to hydrolyzed polyacrylamide (HPAM). The product becomes a random copolymer of acrylamide and acryUc acid (44) (see Acrylamide polya rs). [Pg.182]

The glass-transition temperature in amorphous polymers is also sensitive to copolymerization. Generally, T of a random copolymer falls between the glass-transition temperatures of the respective homopolymers. For example, T for solution-polymerized polybutadiene is —that for solution-polymerized polystyrene is -HlOO°C. A commercial solution random copolymer of butadiene and styrene (Firestone s Stereon) shows an intermediate T of —(48). The glass-transition temperature of the random copolymer can sometimes be related simply as follows ... [Pg.183]

Another important feature of some random copolymers is the abihty to achieve miscibility in either a homopolymer or a second random copolymer. This "copolymer effect" has been shown empirically for quite some time, eg, PVC is miscible with random copolymers of ethylene and vinyl acetate (52). Such systems are effective because repulsions between the dissimilar segments in the copolymer are enough to overcome the repulsions between these segments and those of the second component in the mixture. In other words, in the above example, the ethylene units "hate" vinyl acetate units more than either of them "hate" PVC. Thus there is a net negative interaction energy and the two materials are miscible (53). [Pg.183]

Many random copolymers have found commercial use as elastomers and plastics. For example, SBR (62), poly(butadiene- (9-styrene) [9003-55-8] has become the largest volume synthetic mbber. It can be prepared ia emulsion by use of free-radical initiators, such as K2S20g or Fe /ROOH (eq. 18), or in solution by use of alkyl lithium initiators. Emulsion SBR copolymers are produced under trade names by such companies as American Synthetic Rubber (ASPC), Armtek, B. F. Goodrich (Ameripool), and Goodyear (PHoflex) solution SBR is manufactured by Firestone (Stereon). The total U.S. production of SBR in 1990 was 581,000 t (63). [Pg.184]

A copolymer is made by polymerisation of two monomers, adding them randomly (a random copolymer) or in an ordered way (a block copolymer). An example is styrene-butadiene rubber, SBR. Styrene, extreme left, loses its double bond in the marriage butadiene, richer in double bonds to start with, keeps one. [Pg.53]

In a random copolymer, different monomers are linked in no particular order. A graft copolymer consists of long chains of one monomer with shorter chains of the other monomer attached as side groups. For example, the polymer used to make hard contact lenses is a nonpolar hydrocarbon that repels water. The polymer used to make soft contact lenses is a graft copolymer that has a backbone of... [Pg.887]

Thus, confirmation of whether the product obtained in an attempted reaction in a true random copolymer is important to clarify the mechanism of the propagation reaction and to correlate structure and reactivity in ring-opening polymerizations. Considering that apparent copolymers may be formed by reactions other than copdymerization, for example, by ionic grafting or by combination of polymer chains, characterization of cross-sequences appears to be one of the best ways to check the formation of random copolymers. [Pg.7]

Density is also found to increase in this region, thus providing additional evidence of crystallisation. Certain synthetic elastomers do not undergo this strain-induced crystallisation. Styrene-butadiene, for example, is a random copolymer and hence lacks the molecular regularity necessary to form crystallites on extension. For this material, the stress-strain curve has a different appearance, as seen in Figure 7.12. [Pg.112]

Sequence length distributions are occasionally important. They measure the occurrences of structures like YXY, YXXY, and YXXXY in a random copolymer. These can be calculated from the reactivity ratios and the polymer composition. See, for example. Ham. ... [Pg.491]

An N-vinylpyrrolidone/acrylamide random copolymer (0.05% to 5.0% by weight) is used for cementing compositions [371, 1076]. Furthermore, a sulfonate-containing cement dispersant is necessary. The additive can be used in wells with a bottom-hole temperature of 80° to 300° F. The fluid loss additive mixture is especially effective at low temperatures, for example, below 100° F and in sodium silicate-extended slurries. [Pg.51]

The use of copolymers is essentially a new concept free from low-MW additives. However, a random copolymer, which includes additive functions in the chain, usually results in a relatively costly solution yet industrial examples have been reported (Borealis, Union Carbide). Locking a flame-retardant function into the polymer backbone prevents migration. Organophosphorous functionalities have been incorporated in polyamide backbones to modify thermal behaviour [56]. The materials have potential for use as fire-retardant materials and as high-MW fire-retardant additives for commercially available polymers. The current drive for incorporation of FR functionality within a given polymer, either by blending or copolymerisation, reduces the risk of evolution of toxic species within the smoke of burning materials [57]. Also, a UVA moiety has been introduced in the polymer backbone as one of the co-monomers (e.g. 2,4-dihydroxybenzophenone-formaldehyde resin, DHBF). [Pg.721]

In 1968, a French Patent issued to the Sumitomo Chemical Company disclosed the polymerization of several vinyl monomers in C02 [84], The United States version of this patent was issued in 1970, when Fukui and coworkers demonstrated the precipitation polymerization of several hydrocarbon monomers in liquid and supercritical C02 [85], As examples of this methodology, they demonstrated the preparation of the homopolymers PVC, PS, poly(acrylonitrile) (PAN), poly(acrylic acid) (PAA), and poly(vinyl acetate) (PVAc). In addition, they prepared the random copolymers PS-co-PMMA and PVC-co-PVAc. In 1986, the BASF Corporation was issued a Canadian Patent for the preparation of polymer powders through the precipitation polymerization of monomers in carbon dioxide at superatmospheric pressures [86], Monomers which were polymerized as examples in this patent included 2-hydroxyethylacrylate and iV-vinylcarboxamides such as iV-vinyl formamide and iV-vinyl pyrrolidone. [Pg.116]

For example, a PE-fe-poly(ethylene-co-propylene) diblock composed of crystalline PE and amorphous ethylene/propylene copolymer segments was synthesized from ethylene and ethylene/propylene. The addition of MAO and Ti-FI catalyst 40 (Fig. 25) to an ethylene-saturated toluene at 25 °C resulted in the rapid formation of a living PE (Mn 115,000, MJMn 1.10). The addition of ethylene/propylene (1 3 volume ratio) to this living PE formed a PE-/>poly(ethylcnc-co-propylcnc) block copolymer (Mn 211,000, MJMn 1.16, propylene content 6.4 mol%) [30], As expected, the polymer exhibits a high Tm of 123 °C, indicating that this block copolymer shows good elastic properties at much higher temperatures than the conventional random copolymers of similar densities. [Pg.39]

The use temperature of an elastomer is determined by the range between the T and the Tm. These new OBCs have increased the use temperature range of olefin-based elastomers by > 40 °C, enabling the introduction of these polymers to many new markets and applications where a simple olefin-based solution was previously unavailable. This performance translates to better high temperature elastomeric properties for the OBCs. For example, the 70 °C compression set of an OBC is much lower than that of a comparable ethylene/LAO random copolymer and is closer to that of f-PVC, TPU, or TPV materials [47] (Fig. 23). [Pg.96]

Another example of efficient Forster energy transfer in Eu3+ complexes of fluorene copolymers (similar to the alternating copolymers described in Scheme 2.49) was demonstrated by Huang and coworkers [414] for random copolymers. They synthesized copolymers 336 with a different ratio between the fluorene and the benzene units in the backbone and converted them into europium complexes 337 (Scheme 2.50) [414]. The complexes 337 were capable of both blue and red emission under UV excitation. In solution, blue emission was the dominant mode. However, the blue emission was significantly reduced or completely suppressed in the solid state and nearly monochromatic (fwhm 4 nm) red emission at 613 nm was observed. [Pg.169]

The first commercially successful example of a perfluorinated functional polymer was achieved in 1960 at DuPont.4 It was a random copolymer of TFE and... [Pg.92]

For example, by using 90 parts of vinyl chloride and 10 parts of vinyl acetate, the random copolymer formed has the toughness of poly (vinyl chloride), thermal stability of poly (vinyl acetate) and solubility akin to poly (vinyl acetate). These combination of properties makes it useful as a paint. [Pg.58]

A prime example of these features can be found in the synthesis of styrene/ (meth)acrylate random copolymers. By controlling the initiator/total monomer ratio, the molecular weight can be accurately controlled for both styrene/methyl methacrylate and styrene/butyl acrylate random copolymers. As can be seen in Figure 2.3 the polydispersity for both systems is essentially 1.10-1.25 over comonomer ratios ranging from 1/9 to 9/1. [Pg.61]

Sulfonated poly(arylene ether)s (SPAEKs) have also been developed for application in PEMs, with sulfonated poly(ether ether ketone) (SPEEK) (9a) as the archetypical example of this group. The base polymer of SPEEK is commercially available and relatively cheap, and sulfonation is a straightforward procedure using concentrated sulfuric acid. At sufficient levels of sulfonation, proton conductivity values for SPEEK are comparable to or higher than those of Nafion. However, this does lead to random copolymers where there... [Pg.142]

ABS resin (acrylonitrile-butadiene-styrene) is an example of a random copolymer with three different monomer units, not necessarily present in the same amount. [Pg.263]

For the statistical copolymer the distribution may follow different statistical laws, for example, Bemoullian (zero-order Markov), first- or second-order Markov, depending on the specific reactants and the method of synthesis. This is discussed further in Secs. 6-2 and 6-5. Many statistical copolymers are produced via Bemoullian processes wherein the various groups are randomly distributed along the copolymer chain such copolymers are random copolymers. The terminology used in this book is that recommended by IUPAC [Ring et al., 1985]. However, most literature references use the term random copolymer independent of the type of statistical distribution (which seldom is known). [Pg.136]

In addition to the triblock thermoplastic elastomers, other useful copolymers of styrene with a diene are produced commerically by living anionic polymerization. These include di-and multiblock copolymers, random copolymers, and tapered block copolymers. A tapered (gradient) copolymer has a variation in composition along the polymer chain. For example, S-S/D-D is a tapered block polymer that tapers from a polystyrene block to a styrene-diene random copolymer to polydiene block. (Tapered polymers need not have pure blocks at their ends. One can have a continuously tapered composition from styrene to diene by... [Pg.437]


See other pages where Random copolymers examples is mentioned: [Pg.238]    [Pg.330]    [Pg.183]    [Pg.340]    [Pg.449]    [Pg.7]    [Pg.12]    [Pg.233]    [Pg.211]    [Pg.182]    [Pg.316]    [Pg.497]    [Pg.108]    [Pg.75]    [Pg.76]    [Pg.196]    [Pg.217]    [Pg.54]    [Pg.48]    [Pg.308]    [Pg.159]    [Pg.112]    [Pg.209]    [Pg.194]    [Pg.66]    [Pg.331]   
See also in sourсe #XX -- [ Pg.220 , Pg.222 ]




SEARCH



Random copolymer

© 2024 chempedia.info