Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Raman advantages

Method Dep. Rate (mm/hr) Dep. Area (cm ) Quality (Raman) Advantages Drawbacks... [Pg.336]

One disadvantage of the F l -Raman spectrometer ts that waier absorbs in the l(K)0-nm region, which can cancel the Raman advantage of being able to use aque-... [Pg.491]

One of the well known advantages of resonance Raman spectroscopy is that samples dissolved in water can be studied since water is transparent in the visible region. Furthennore, many molecules of biophysical interest assume their native state in water. For this reason, resonance Raman spectroscopy has been particularly strongly embraced in the biophysical connnunity. [Pg.1151]

The advantages of resonance Raman spectroscopy have already been discussed in section BL2.2.3. For these reasons it is rapidly becoming the method of choice for studying large molecules in solution. Flere we will present one study that exemplifies its attributes. There are two complementary methods for studying proteins. [Pg.1170]

Other than the obvious advantages of reduced fluorescence and high resolution, FT Raman is fast, safe and requires mmimal skill, making it a popular analytic tool for the characterization of organic compounds, polymers, inorganic materials and surfaces and has been employed in many biological applications [41]. [Pg.1200]

Laser Raman diagnostic teclmiques offer remote, nonintnisive, nonperturbing measurements with high spatial and temporal resolution [158], This is particularly advantageous in the area of combustion chemistry. Physical probes for temperature and concentration measurements can be debatable in many combustion systems, such as furnaces, internal combustors etc., since they may disturb the medium or, even worse, not withstand the hostile enviromnents [159]. Laser Raman techniques are employed since two of the dominant molecules associated with air-fed combustion are O2 and N2. Flomonuclear diatomic molecules unable to have a nuclear coordinate-dependent dipole moment caimot be diagnosed by infrared spectroscopy. Other combustion species include CFl, CO2, FI2O and FI2 [160]. These molecules are probed by Raman spectroscopy to detenuine the temperature profile and species concentration m various combustion processes. [Pg.1215]

The use of vibrational Raman spectroscopy in qualitative analysis has increased greatly since the introduction of lasers, which have replaced mercury arcs as monochromatic sources. Although a laser Raman spectrometer is more expensive than a typical infrared spectrometer used for qualitative analysis, it does have the advantage that low- and high-wavenumber vibrations can be observed with equal ease whereas in the infrared a different, far-infrared, spectrometer may be required for observations below about 400 cm. ... [Pg.159]

The selection mles for CARS are precisely the same as for spontaneous Raman scattering but CARS has the advantage of vastly increased intensity. [Pg.367]

A principal advantage of the Raman microprobe is that the optics are those of a conventional light microscope a wide variety of special-purpose objectives developed for materials and biological microscopy are available. The Raman microprobe also offers the advantage of fluorescence reduction owing to the high spatial resolution of the microscope if a region of low fluorescence can be chosen for observation. [Pg.213]

Solid state NMR is a relatively recent spectroscopic technique that can be used to uniquely identify and quantitate crystalline phases in bulk materials and at surfaces and interfaces. While NMR resembles X-ray diffraction in this capacity, it has the additional advantage of being element-selective and inherently quantitative. Since the signal observed is a direct reflection of the local environment of the element under smdy, NMR can also provide structural insights on a molecularlevel. Thus, information about coordination numbers, local symmetry, and internuclear bond distances is readily available. This feature is particularly usefrd in the structural analysis of highly disordered, amorphous, and compositionally complex systems, where diffraction techniques and other spectroscopies (IR, Raman, EXAFS) often fail. [Pg.460]

The most widely used techniques for surface analysis are Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), Raman and infrared spectroscopy, and contact angle measurement. Some of these techniques have the ability to determine the composition of the outermost atomic layers, although each technique possesses its own special advantages and disadvantages. [Pg.517]

This review will endeavor to outline some of the advantages of Raman Spectroscopy and so stimulate interest among workers in the field of surface chemistry to utilize Raman Spectroscopy in the study of surface phenomena. Up to the present time, most of the work has been directed to adsorption on oxide surfaces such as silicas and aluminas. An examination of the spectrum of a molecule adsorbed on such a surface may reveal information as to whether the molecule is physically or chemically adsorbed and whether the adsorption site is a Lewis acid site (an electron deficient site which can accept electrons from the adsorbate molecule) or a Bronsted acid site (a site which can donate a proton to an adsorbate molecule). A specific example of a surface having both Lewis and Bronsted acid sites is provided by silica-aluminas which are used as cracking catalysts. [Pg.294]

The Raman spectrum of an oxide sample after adsorption may be considered to consist of the spectrum of the adsorbed species superimposed on the spectrum due to the oxide adsorbent. In general, the Raman spectra of oxide adsorbents are sufficiently weak or sufficiently simple that they allow the detection of Raman lines due to the adsorbed species. This is one major advantage of Raman scattering over infrared absorption spectroscopy. The infrared spectra of most oxide adsorbents show strong absorptions which may obscure those arising from the adsorbates (Figs. 13,14). [Pg.321]

The basic methods of the identification and study of matrix-isolated intermediates are infrared (IR), ultraviolet-visible (UV-vis), Raman and electron spin resonance (esr) spectroscopy. The most widely used is IR spectroscopy, which has some significant advantages. One of them is its high information content, and the other lies in the absence of overlapping bands in matrix IR spectra because the peaks are very narrow (about 1 cm ), due to the low temperature and the absence of rotation and interaction between molecules in the matrix. This fact allows the identification of practically all the compounds present, even in multicomponent reaetion mixtures, and the determination of vibrational frequencies of molecules with high accuracy (up to 0.01 cm when Fourier transform infrared spectrometers are used). [Pg.6]


See other pages where Raman advantages is mentioned: [Pg.387]    [Pg.228]    [Pg.451]    [Pg.387]    [Pg.228]    [Pg.451]    [Pg.1162]    [Pg.1200]    [Pg.1201]    [Pg.1207]    [Pg.1209]    [Pg.1788]    [Pg.1989]    [Pg.2962]    [Pg.2962]    [Pg.141]    [Pg.155]    [Pg.209]    [Pg.211]    [Pg.212]    [Pg.214]    [Pg.148]    [Pg.319]    [Pg.52]    [Pg.414]    [Pg.431]    [Pg.432]    [Pg.317]    [Pg.387]    [Pg.59]    [Pg.113]    [Pg.1619]    [Pg.539]    [Pg.36]    [Pg.5]    [Pg.517]    [Pg.32]    [Pg.40]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



Laser-Raman spectroscopy advantages

Raman spectroscopy advantages

Sampling Raman advantages

© 2024 chempedia.info