Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser-Raman spectroscopy advantages

There is a tendency in discussing a new technique to point out its advantages and that is the approach taken here for laser Raman spectroscopy. It is worth emphasizing that fluorescence still presents a major sampling problem for most commercial materials in the Raman and that at this time infrared is much more widely applicable to applied polymer science. Infrared is generally the more effective tool for trace analyses and for quantitative data. [Pg.726]

An advantage of laser Raman spectroscopy over other spectroscopic techniques is that the sample does not require special... [Pg.599]

Just as in absorption spectroscopy, the sensitivity may be enhanced by difference laser Raman spectroscopy, where the pump laser passes alternately through a cell containing the sample molecules dissolved in some liquid and through a cell containing only the liquid. The basic advantages of this difference technique are the cancellation of unwanted Raman bands of the solvent in the spectrum of the solution and the accurate determination of small frequency shifts due to interactions with the solvent molecules. [Pg.157]

Raman spectroscopy is a vibrational spectroscopic technique which can be a useful probe of protein structure, since both intensity and frequency of vibrational motions of the amino acid side chains or polypeptide backbone are sensitive to chemical changes and the microenvironment around the functional groups. Thus, it can monitor changes related to tertiary structure as well as secondary structure of proteins. An important advantage of this technique is its versatility in application to samples which may be in solution or solid, clear or turbid, in aqueous or organic solvent. Since the concentration of proteins typically found in food systems is high, the classical dispersive method based on visible laser Raman spectroscopy, as well as the newer technique known as Fourier-transform Raman spectroscopy which utilizes near-infrared excitation, are more suitable to study food proteins (Li-Chan et aL, 1994). In contrast the technique based on ultraviolet excitation, known as resonance Raman spectroscopy, is more commonly used to study dilute protein solutions. [Pg.15]

Laser Raman diagnostic teclmiques offer remote, nonintnisive, nonperturbing measurements with high spatial and temporal resolution [158], This is particularly advantageous in the area of combustion chemistry. Physical probes for temperature and concentration measurements can be debatable in many combustion systems, such as furnaces, internal combustors etc., since they may disturb the medium or, even worse, not withstand the hostile enviromnents [159]. Laser Raman techniques are employed since two of the dominant molecules associated with air-fed combustion are O2 and N2. Flomonuclear diatomic molecules unable to have a nuclear coordinate-dependent dipole moment caimot be diagnosed by infrared spectroscopy. Other combustion species include CFl, CO2, FI2O and FI2 [160]. These molecules are probed by Raman spectroscopy to detenuine the temperature profile and species concentration m various combustion processes. [Pg.1215]

The use of vibrational Raman spectroscopy in qualitative analysis has increased greatly since the introduction of lasers, which have replaced mercury arcs as monochromatic sources. Although a laser Raman spectrometer is more expensive than a typical infrared spectrometer used for qualitative analysis, it does have the advantage that low- and high-wavenumber vibrations can be observed with equal ease whereas in the infrared a different, far-infrared, spectrometer may be required for observations below about 400 cm. ... [Pg.159]

Various techniques have been introduced which still lack specific applications in polymer/additive analysis, but which may reasonably be expected to lead to significant contributions in the future. Examples are LC-QToFMS, LC-multi-API-MS, GC-ToFMS, Raman spectroscopy (to a minor extent), etc. Expectations for DIP-ToFMS [132], PTV-GC-ToFMS [133] and ASE are high. The advantages of SFC [134,135], on-line multidimensional chromatographic techniques [136,137] and laser-based methods for polymer/additive analysis appear to be more distant. Table 10.33 lists some innovative polymer/additive analysis protocols. As in all endeavours, the introduction of new technology needs a champion. [Pg.745]

An interesting and powerful new development in Raman spectroscopy of catalysts is the use of a UV laser to excite the sample. This has two major advantages. First, the scattering cross section, which varies with the fourth power of the frequency, is substantially increased. Second, the Raman peaks shift out of the visible region of the spectrum where fluorescence occurs. The reader is referred to Li and Stair for applications of UV Raman spectroscopy on catalysts [40]. [Pg.235]

Laser flash photolysis methods have also been applied to the study of nitrenium ion trapping rates and hfetimes. This method relies on short laser pulses to create a high transient concentration of the nitrenium ion, and fast detection technology to characterize its spectrum and lifetime The most frequently used detection method is fast UV-vis spectroscopy. This method has the advantage of high sensitivity, but provides very little specific information about the structure of the species being detected. More recently, time-resolved infrared (TRIR) and Raman spectroscopies have been used in conjunction with flash photolysis methods. These provide very detailed structural information, but suffer from lower detection sensitivity. [Pg.634]

Dramatic improvements in instrumentation (lasers, detectors, optics, computers, and so on) have during recent years raised the Raman spectroscopy technique to a level where it can be used for species specific quantitative chemical analysis. Although not as sensitive as, for example IR absorption, the Raman technique has the advantage that it can directly measure samples inside ampoules and other kinds of closed vials because of the transparency of many window materials. Furthermore, with the use of polarization techniques, one can derive molecular information that cannot be obtained from IR spectra. Good starting references dealing with Raman spectroscopy instruments and lasers are perhaps [34-38]. [Pg.310]


See other pages where Laser-Raman spectroscopy advantages is mentioned: [Pg.73]    [Pg.81]    [Pg.109]    [Pg.139]    [Pg.139]    [Pg.82]    [Pg.541]    [Pg.704]    [Pg.1200]    [Pg.155]    [Pg.212]    [Pg.148]    [Pg.431]    [Pg.32]    [Pg.535]    [Pg.415]    [Pg.16]    [Pg.121]    [Pg.114]    [Pg.197]    [Pg.204]    [Pg.217]    [Pg.181]    [Pg.601]    [Pg.228]    [Pg.140]    [Pg.160]    [Pg.241]    [Pg.311]    [Pg.132]    [Pg.155]    [Pg.148]    [Pg.212]    [Pg.117]    [Pg.276]    [Pg.21]   
See also in sourсe #XX -- [ Pg.73 ]

See also in sourсe #XX -- [ Pg.44 , Pg.73 ]




SEARCH



Laser advantages

Laser spectroscopy

Raman advantage

Raman lasers

Raman spectroscopy advantages

© 2024 chempedia.info