Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radium radioactivity

Although largely chemically inert, the ether did, according to Mendeleev, interact chemically with ponderable matter in the extreme gravitational circumstances of the environment of very heavy atoms like those of uranimn or radium. Radioactivity was then explained as the release of energy produced by this gravitational — yet stiU chemical — interaction between heavy atom and ether. [Pg.261]

Poland, native country of Mme. Curie) Polonium, also called Radium F, was the first element discovered by Mme. Curie in 1898 while seeking the cause of radioactivity of pitchblend from Joachimsthal, Bohemia. The electroscope showed it separating with bismuth. [Pg.148]

Care must be taken in handling radon, as with other radioactive materials. The main hazard is from inhalation of the element and its solid daughters which are collected on dust in the air. Good ventilation should be provided where radium, thorium, or actinium is stored to prevent build-up of the element. Radon build-up is a health consideration in uranium mines. Recently radon build-up in homes has been a concern. Many deaths from lung cancer are caused by radon exposure. In the U.S. it is recommended that remedial action be taken if the air in homes exceeds 4 pCi/1. [Pg.153]

Radon-222 [14859-67-7] Rn, is a naturally occuriing, iaert, radioactive gas formed from the decay of radium-226 [13982-63-3] Ra. Because Ra is a ubiquitous, water-soluble component of the earth s cmst, its daughter product, Rn, is found everywhere. A major health concern is radon s radioactive decay products. Radon has a half-life of 4 days, decayiag to polonium-218 [15422-74-9] Po, with the emission of an a particle. It is Po, an a-emitter having a half-life of 3 min, and polonium-214 [15735-67-8] Po, an a-emitter having a half-life of 1.6 x lO " s, that are of most concern. Polonium-218 decays to lead-214 [15067-28A] a p-emitter haviag = 27 min, which decays to bismuth-214 [14733-03-0], a p-emitter haviag... [Pg.381]

Argon-40 [7440-37-1] is created by the decay of potassium-40. The various isotopes of radon, all having short half-Hves, are formed by the radioactive decay of radium, actinium, and thorium. Krypton and xenon are products of uranium and plutonium fission, and appreciable quantities of both are evolved during the reprocessing of spent fuel elements from nuclear reactors (qv) (see Radioactive tracers). [Pg.4]

Curie (Ci) A unit of radioactivity, related to the emission from 1 g of radium, it is equal to 3.7 x 10 disintegrations per gram per second. This unit has been replaced by the Becquerel (Bq) 1... [Pg.1426]

Radon A radioactive element, the heaviest of the noble gases, formed by the radioactive decay of radium. [Pg.1471]

The isolation and identification of 4 radioactive elements in minute amounts took place at the turn of the century, and in each case the insight provided by the periodic classification into the predicted chemical properties of these elements proved invaluable. Marie Curie identified polonium in 1898 and, later in the same year working with Pierre Curie, isolated radium. Actinium followed in 1899 (A. Debierne) and the heaviest noble gas, radon, in 1900 (F. E. Dorn). Details will be found in later chapters which also recount the discoveries made in the present century of protactinium (O. Hahn and Lise Meitner, 1917), hafnium (D. Coster and G. von Hevesey, 1923), rhenium (W. Noddack, Ida Tacke and O. Berg, 1925), technetium (C. Perrier and E. Segre, 1937), francium (Marguerite Percy, 1939) and promethium (J. A. Marinsky, L. E. Glendenin and C. D. Coryell, 1945). [Pg.30]

Radium, the last element in the group, was isolated in trace amounts as the chloride by P. and M. Curie in 1898 after their historic processing of tonnes of pitchblende. It was named by Mme Curie in allusion to its radioactivity, a word also coined by her (Latin radius, a ray) the element itself was isolated electrolytically via an amalgam by M. Curie and A. Debieme in 1910 and its compounds give a carmine-red flame test. [Pg.108]

Polonium has no stable isotopes, all 27 isotopes being radioactive of these only °Po occurs naturally, as the penultimate member of the radium decay series ... [Pg.748]

Element 86, the final member of the group, is a short-lived, radioactive element, formerly known as radium-emanation or niton or, depending on which radioactive series it originates in (i.e. which isotope) as radon, thoron, or actinon. It was first isolated and studied in 1902 by E. Rutherford and F. Soddy and is now universally known as radon (from radium and the termination-on adopted for the noble gases Latin radius, ray). [Pg.889]

Although the Curies noted that one equivalent gram of radium released one hundred calorics of heat per hour, they were uninterested in the practical implications of this, as they were both devoted to pure scientific discovery. During their work with pitchblende in 1898, the Curies discovered two new radioactive elements, which they named polonium (in honor of Marie s homeland) and radium. By 1902 they had isolated a pure radium salt and made the first atomic weight determination. [Pg.317]

Although the nucleus of the uranium atom is relatively stable, it is radioactive, and will remain that way for many years. The half-life of U-238 is over 4.5 billion years the half-life of U-235 is over 700 million years. (Half-life refers to the amount of time it takes for one half of the radioactive material to undergo radioactive decay, turning into a more stable atom.) Because of uranium radiation, and to a lesser extent other radioactive elements such as radium and radon, uranium mineral deposits emit a finite quantity of radiation that require precautions to protect workers at the mining site. Gamma radiation is the... [Pg.866]

In 1898, Marie and Pierre Curie isolated two new radioactive elements, which they named radium and polonium. To obtain a few milligrams of these elements, they started with several tons of pitchblende ore and carried out a long series of tedious separations. Their work was done in a poorly equipped, unheated shed where the temperature reached 6°C (43°F) in winter. Four years later, in 1902, Marie determined the atomic mass of radium to within 0.5%, working with a tiny sample. [Pg.517]

In 1903, the Curies received the Nobel Prize in physics (with Becquerel) for the discovery of radioactivity. Three years later, Pierre Curie died at the age of 46, the victim of a tragic accident. Fie stepped from behind a carriage in a busy Paris street and was run down by a horse-driven truck. That same year, Marie became the first woman instructor at the Sorbonne. In 1911, she won the Nobel Prize in chemistry for the discovery of radium and polonium, thereby becoming the first person to win two Nobel Prizes. [Pg.517]

In 1921, Irene Curie (1897-1956) began research at the Radium Institute. Five years later she married Frederic Joliot (1900-1958). a brilliant young physicist who was also an assistant at the Institute. In 1931, they began a research program in nuclear chemistry that led to several important discoveries and at least one near miss. The Joliot-Curies were the first to demonstrate induced radioactivity. They also discovered the positron, a particle that scientists had been seeking for many years. They narrowly missed finding another, more fundamental particle, the neutron. That honor went to James Chadwick in England. In 1935,... [Pg.517]

For the radioactive decay of radium, 2 Ra -late AE in kilojoules when 10.2 g of radium decays. [Pg.521]

Radioactivity The ability possessed by some natural and synthetic isotopes to undergo nuclear transformation to other isotopes, 513 applications, 516-518 biological effects, 528-529 bombardment reactions, 514-516 diagnostic uses, 516t discovery of, 517 modes of decay, 513-514 nuclear stability and, 29-30 rate of decay, 518-520,531q Radium, 521-522 Radon, 528 Ramsay, William, 190 Random polymer 613-614 Randomness factor, 452-453 Raoult s law A relation between the vapor pressure (P) of a component of a solution and that of the pure component (P°) at the same temperature P — XP°, where X is the mole fraction, 268... [Pg.695]

The experiment conducted by Rutherford and his co-workers involved bombarding gold foil with alpha particles, which are doubly charged helium atoms. The apparatus used in their experiment is shown in Figure 14-9. The alpha particles are produced by the radioactive decay of radium, and a narrow beam of these particles emerges from a deep hole in a block of lead. The beam of particles is directed at a thin metal foil, approximately 10,000 atoms thick. The alpha particles are delected by the light they produce when they collide with scintilltaion screens, which are zinc sulfide-covered plates much like the front of the picture tube in a television set. The screen... [Pg.244]

Radium is radioactive and extremely rare. It occurs in trace amounts (one part in 1012) in uranium ores such as pitchblende (mainly U308). [Pg.385]

In 1896, the French scientist Fienri Becquerel happened to store a sample of uranium oxide in a drawer that contained some photographic plates (Fig. 17.2). He was astonished to find that the uranium compound darkened the plates even though they were covered with an opaque material. Becquerel realized that the uranium compound must give off some kind of radiation. Marie Sklodowska Curie (Fig. 17.3), a young Polish doctoral student, showed that the radiation, which she called radioactivity, was emitted by uranium regardless of the compound in which it was found. She concluded that the source must be the uranium atoms themselves. Together with her husband, Pierre, she went on to show that thorium, radium, and polonium are also radioactive. [Pg.819]

Fajans K, Gohring O (1913) Uber die komplexe Natur des UrX. Naturwissenschaften 1 339 Ramsay W, Soddy F (1903) Experiments in radioactivity and the production of helium from radium. Proc R Soc London 72 204-207... [Pg.2]

Figure 2. Alpha spectrum for a radium adsorbing manganese-oxide thin film exposed to a groundwater sample, after Surbeck (2000) and Eikenberg et al. (2001b). A 2x2 cm sheet is exposed to O.l-l.O L of sample for 2 days, capturing nearly all of the radium in the sample. These sample discs can be used directly for low-level alpha spectrometry without the need for further separation and preparation methods to produce planar sample sources. Energy resolution is nearly as good as for electroplated sources, and detection limits are typically 0.2 mBqA (6 fg Ra/L) for Ra and " Ra for a one-week counting period. These sensitivities are comparable to traditional methods of alpha spectrometry. [Used by permission of Elsevier Science, from Eikenberg et al. (2001), J Environ Radioact, Vol. 54, Fig. 4, p. 117]... Figure 2. Alpha spectrum for a radium adsorbing manganese-oxide thin film exposed to a groundwater sample, after Surbeck (2000) and Eikenberg et al. (2001b). A 2x2 cm sheet is exposed to O.l-l.O L of sample for 2 days, capturing nearly all of the radium in the sample. These sample discs can be used directly for low-level alpha spectrometry without the need for further separation and preparation methods to produce planar sample sources. Energy resolution is nearly as good as for electroplated sources, and detection limits are typically 0.2 mBqA (6 fg Ra/L) for Ra and " Ra for a one-week counting period. These sensitivities are comparable to traditional methods of alpha spectrometry. [Used by permission of Elsevier Science, from Eikenberg et al. (2001), J Environ Radioact, Vol. 54, Fig. 4, p. 117]...
Krishnaswami S, Graustein WC, Turekian KK, Dowd F (1982) Radium, thorium, and radioactive lead isotopes in groundwaters application to the in-situ determination of adsorption-desorption rate constants and retardation factors. Water Resour Res 6 1663-1675 Krishnaswami S, Bhushan R, Baskaran M (1991) Radium isotopes and Rn in shallow brines, Kharaghoda (India). Chem Geol (Isot Geosci) 87 125-136 Kronfeld J, Vogel JC, Talma AS (1994) A new explanation for extreme " U/ U disequilibria in a dolomitic aquifer. Earth Planet Sci Lett 123 81-93... [Pg.358]

Manheim FX, Pauli, CK (1981) Patterns of ground water salinity changes in a deep continental-oceanic transect off the southeastern Atlantic coast of the U.S.A. J Hydrol 54 95-105 Martin P, Akber RA (1999) Radium isotopes as indicators of adsorption-desorption interactions and barite formation in groundwater. J Environ Radioact 46 271-286 McCarthy J, Shevenell L (1998) Obtaining representative ground water samples in a fractured and karstic formation. Ground Water 36 251-260... [Pg.359]


See other pages where Radium radioactivity is mentioned: [Pg.3]    [Pg.28]    [Pg.3]    [Pg.28]    [Pg.14]    [Pg.340]    [Pg.155]    [Pg.206]    [Pg.419]    [Pg.443]    [Pg.313]    [Pg.170]    [Pg.110]    [Pg.748]    [Pg.572]    [Pg.1036]    [Pg.1036]    [Pg.464]    [Pg.829]    [Pg.844]    [Pg.358]    [Pg.32]    [Pg.27]    [Pg.119]    [Pg.153]    [Pg.208]    [Pg.360]   
See also in sourсe #XX -- [ Pg.350 ]

See also in sourсe #XX -- [ Pg.286 ]

See also in sourсe #XX -- [ Pg.3 , Pg.581 ]




SEARCH



Radioactive materials radium

Radioactive radium

Radioactive radium

Radioactivity of radium

Radium

Radium as radioactive decay product

Radium radioactive decay

Radium radioactive inert gases

© 2024 chempedia.info