Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Barite formation

Manheim FX, Pauli, CK (1981) Patterns of ground water salinity changes in a deep continental-oceanic transect off the southeastern Atlantic coast of the U.S.A. J Hydrol 54 95-105 Martin P, Akber RA (1999) Radium isotopes as indicators of adsorption-desorption interactions and barite formation in groundwater. J Environ Radioact 46 271-286 McCarthy J, Shevenell L (1998) Obtaining representative ground water samples in a fractured and karstic formation. Ground Water 36 251-260... [Pg.359]

Given a specific application, we might also include precipitation kinetics in our calculations, as described in Chapter 16. Wat et al. (1992) present a brief study of the kinetics of barite formation, including the effects of scale inhibitors on precipitation rates. For a variety of reasons (see Section 16.2), however, it remains difficult to construct reliable models of the kinetics of scale precipitation. [Pg.442]

Figure 9.3c shows that the log N versus log S curve is very steep, so that homogeneous nucleation rates are very low when log S is less than 3 but they become very fast as log S increases from 3 to 4. When log S is less than about 3, barite nucleates so slowly that it is unlikely to cause a technological problem. Barite formation for log S < 3 will involve heterogeneous nucleation (Kashchiev and van Rosmalen, 2003), which is modeled using a modified geometry and surface free energy for the critical cluster. [Pg.193]

Although numerous mud additives aid in obtaining the desired drilling fluid properties, water-based muds have three basic components water, reactive soHds, and inert soHds. The water forming the continuous phase may be fresh water, seawater, or salt water. The reactive soHds are composed of commercial clays, incorporated hydratable clays and shales from drilled formations, and polymeric materials, which may be suspended or dissolved in the water phase. SoHds, such as barite and hematite, are chemically inactive in most mud systems. Oil and synthetic muds contain, in addition, an organic Hquid as the continuous phase plus water as the discontinuous phase. [Pg.177]

Calcium—Silicon. Calcium—silicon and calcium—barium—siUcon are made in the submerged-arc electric furnace by carbon reduction of lime, sihca rock, and barites. Commercial calcium—silicon contains 28—32% calcium, 60—65% siUcon, and 3% iron (max). Barium-bearing alloys contains 16—20% calcium, 9—12% barium, and 53—59% sihcon. Calcium can also be added as an ahoy containing 10—13% calcium, 14—18% barium, 19—21% aluminum, and 38—40% shicon These ahoys are used to deoxidize and degasify steel. They produce complex calcium shicate inclusions that are minimally harm fill to physical properties and prevent the formation of alumina-type inclusions, a principal source of fatigue failure in highly stressed ahoy steels. As a sulfide former, they promote random distribution of sulfides, thereby minimizing chain-type inclusions. In cast iron, they are used as an inoculant. [Pg.541]

Heavy metals are present in drilled formation solids and in naturally occurring materials used as mud additives. The latter include barite, bentonite, lignite, and mica (sometimes used to stop mud losses downhole). There are background levels of heavy metals in trees that carry through into lignosulfonate made from them. [Pg.682]

Sr/ Sr of barite from small Kuroko deposits (Iwami in San-in and Minamishi-raoi in Hokkaido) are lower (Yoneda, et al., 1993 Honma and Shuto, 1979 Farrell and Holland, 1983) than that from large Kuroko deposits in Hokuroku district. This indicates that a large seawater circulation did not occur in a small Kuroko mine area and that seawater circulation is important for the formation of Kuroko deposits. [Pg.57]

The various morphological features of barites from the Kuroko and Mariana deposits, when combined with the experimental studies on barite precipitation, suggest that the surface reaction mechanism was dominant for the formation of these barites. This implies that the concentration product, m 2+) msol-), at the initiation of barite precipitation was probably less than ca. 100 times that for equilibrium. [Pg.75]

Farrell and Holland (1983) cited ba,sed on Sr isotope study on anhydrite and barite in Kuroko deposits that the most appealing model for the formation of Kuroko strata-bound ores would seem to entail precipitation of the minerals from a hydrothermal solution within the discharge vent or in the interior of a hydrothermal plume formed immediately below above the vent exit in the overlying seawater (Eldridge et al., 1983). The study on the chimney ores from Kuroko deposits support this model which is discussed below. [Pg.366]

A common problem in offshore petroleum production is that sulfate scale may form when seawater is injected into the formation during waterflooding operations. The scale forms when seawater, which is rich in sulfate but relatively poor in Ca++ and nearly depleted in Sr++ and Ba++, mixes with formation fluids, many of which contain bivalent cations in relative abundance but little sulfate. The mixing causes minerals such as gypsum (CaSC>4 2H2O), anhydrite (CaSC>4), celestite (SrSOzO, and barite (BaS04, an almost insoluble salt) to become saturated and precipitate as scale. [Pg.436]

Fig. 30.1. Volumes of minerals precipitated during a reaction model simulating the mixing at reservoir temperature of seawater into formation fluids from the Miller, Forties, and Amethyst oil fields in the North Sea. The reservoir temperatures and compositions of the formation fluids are given in Table 30.1. The initial extent of the system in each case is 1 kg of solvent water. Not shown for the Amethyst results are small volumes of strontianite, barite, and dolomite that form during mixing. Fig. 30.1. Volumes of minerals precipitated during a reaction model simulating the mixing at reservoir temperature of seawater into formation fluids from the Miller, Forties, and Amethyst oil fields in the North Sea. The reservoir temperatures and compositions of the formation fluids are given in Table 30.1. The initial extent of the system in each case is 1 kg of solvent water. Not shown for the Amethyst results are small volumes of strontianite, barite, and dolomite that form during mixing.
In the three simulations, the sulfate minerals form at mixing ratios related to their solubilities. Barite, the least soluble, forms early, when small amounts of seawater are added. The more soluble celestite forms only after the addition of somewhat larger quantities of seawater. Anhydrite, the most soluble of the minerals, forms from the Amethyst fluid at still higher ratios of seawater to formation fluid. [Pg.441]

Sediments formed by the abiogenic precipitation of solutes from seawater are termed hydrogenous. Unequivocal examples of hydrogenous sediments are ones formed from the evaporation of seawater. The minerals deposited are collectively called evaporites and are the subject of Chapter 17. Others form with the assistance, to varying degrees, of marine microbes. For example, bacteria seem to play a role in the formation of Fe-Mn nodules and crusts. Some hydrogenous minerals, such as barite, celestite, glauconite, and francolite, are produced from the precipitation of elements... [Pg.341]

Spherulite formation by geometrical selection may rarely be seen on crystals with isotropic Habitus. Native arsenic. As, occurs in a confeito-like form, and is a type of spherulite grown through the geometrical selection of rhombohedral crystals. Spherical aggregation of calcite crystals with nail-head Habitus is also observed. Semi-spherical aggregates of platy barite crystals known as desert rose are shown in Fig. 8.6. [Pg.157]

Minerals of economic importance within sedimentary formations include, hut are not limited to fluorite, barite, phosphorite, and oolitic hematite. Fluorite is utili/ed us a flux in steelniakiitg and when of high quality as lenses and prisms in the optical industry. Barite is an essential mineral used m gas- and oil-well drilling. Phosphorite, a product of chemical precipitation from seawater, when ircaled with sulfuric acid, produces superphosphate fertilizer, (.killtic hematite deposits of extensive size are important sources of iron ore. [Pg.1010]


See other pages where Barite formation is mentioned: [Pg.40]    [Pg.31]    [Pg.174]    [Pg.176]    [Pg.152]    [Pg.1196]    [Pg.37]    [Pg.61]    [Pg.72]    [Pg.75]    [Pg.370]    [Pg.370]    [Pg.388]    [Pg.26]    [Pg.26]    [Pg.263]    [Pg.10]    [Pg.440]    [Pg.441]    [Pg.231]    [Pg.307]    [Pg.234]    [Pg.467]    [Pg.468]    [Pg.311]    [Pg.55]    [Pg.660]    [Pg.32]    [Pg.92]    [Pg.67]    [Pg.136]    [Pg.77]    [Pg.13]   
See also in sourсe #XX -- [ Pg.467 ]




SEARCH



Barite

© 2024 chempedia.info