Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radioactivity of radium

The high radioactivity of radium requires special handling techniques and precautions. Its high radioactivity is far more important than any chemical toxicity but from a chemical point of view its hazards are similar to those of barium. [Pg.350]

In addition to the normal radioactivity of radium, thorium, polonium, and uranium, radioactivity may be induced in these elements. The cyclotron has made it possible to obtain high-energy particles in considerable concentrations, and so it may be anticipated that artificial radio elements will become increasingly accessible to research workers. It is for this reason... [Pg.244]

In 1898, the Curies discovered a second new element that they called radium due to its extreme radioactivity. They wrote, The radioactivity of radium must be enormous. . . 900 times that of uranium. In fact, pure radium is so radioactive that it spontaneously glows. In 1903, Marie was awarded her Ph.D. and within a few months shared the Nobel Prize in physics with her husband Pierre and Henri Becquerel for the discovery of radioactivity. In 1911, Marie was awarded a second Nobel Prize, this time in chemistry, for her discovery of the two new elements radium and polonium. She was the first person to win two Nobel Prizes. As a further tribute to this amazing family, the Curies daughter, Irene, shared a Nobel Prize in physics in 1935 with her husband, Frederick Joliot, for her work in radioactivity. [Pg.230]

Poland, native country of Mme. Curie) Polonium, also called Radium F, was the first element discovered by Mme. Curie in 1898 while seeking the cause of radioactivity of pitchblend from Joachimsthal, Bohemia. The electroscope showed it separating with bismuth. [Pg.148]

Radon-222 [14859-67-7] Rn, is a naturally occuriing, iaert, radioactive gas formed from the decay of radium-226 [13982-63-3] Ra. Because Ra is a ubiquitous, water-soluble component of the earth s cmst, its daughter product, Rn, is found everywhere. A major health concern is radon s radioactive decay products. Radon has a half-life of 4 days, decayiag to polonium-218 [15422-74-9] Po, with the emission of an a particle. It is Po, an a-emitter having a half-life of 3 min, and polonium-214 [15735-67-8] Po, an a-emitter having a half-life of 1.6 x lO " s, that are of most concern. Polonium-218 decays to lead-214 [15067-28A] a p-emitter haviag = 27 min, which decays to bismuth-214 [14733-03-0], a p-emitter haviag... [Pg.381]

Argon-40 [7440-37-1] is created by the decay of potassium-40. The various isotopes of radon, all having short half-Hves, are formed by the radioactive decay of radium, actinium, and thorium. Krypton and xenon are products of uranium and plutonium fission, and appreciable quantities of both are evolved during the reprocessing of spent fuel elements from nuclear reactors (qv) (see Radioactive tracers). [Pg.4]

Curie (Ci) A unit of radioactivity, related to the emission from 1 g of radium, it is equal to 3.7 x 10 disintegrations per gram per second. This unit has been replaced by the Becquerel (Bq) 1... [Pg.1426]

Radon A radioactive element, the heaviest of the noble gases, formed by the radioactive decay of radium. [Pg.1471]

Polonium has no stable isotopes, all 27 isotopes being radioactive of these only °Po occurs naturally, as the penultimate member of the radium decay series ... [Pg.748]

Although the Curies noted that one equivalent gram of radium released one hundred calorics of heat per hour, they were uninterested in the practical implications of this, as they were both devoted to pure scientific discovery. During their work with pitchblende in 1898, the Curies discovered two new radioactive elements, which they named polonium (in honor of Marie s homeland) and radium. By 1902 they had isolated a pure radium salt and made the first atomic weight determination. [Pg.317]

In 1898, Marie and Pierre Curie isolated two new radioactive elements, which they named radium and polonium. To obtain a few milligrams of these elements, they started with several tons of pitchblende ore and carried out a long series of tedious separations. Their work was done in a poorly equipped, unheated shed where the temperature reached 6°C (43°F) in winter. Four years later, in 1902, Marie determined the atomic mass of radium to within 0.5%, working with a tiny sample. [Pg.517]

In 1903, the Curies received the Nobel Prize in physics (with Becquerel) for the discovery of radioactivity. Three years later, Pierre Curie died at the age of 46, the victim of a tragic accident. Fie stepped from behind a carriage in a busy Paris street and was run down by a horse-driven truck. That same year, Marie became the first woman instructor at the Sorbonne. In 1911, she won the Nobel Prize in chemistry for the discovery of radium and polonium, thereby becoming the first person to win two Nobel Prizes. [Pg.517]

For the radioactive decay of radium, 2 Ra -late AE in kilojoules when 10.2 g of radium decays. [Pg.521]

The experiment conducted by Rutherford and his co-workers involved bombarding gold foil with alpha particles, which are doubly charged helium atoms. The apparatus used in their experiment is shown in Figure 14-9. The alpha particles are produced by the radioactive decay of radium, and a narrow beam of these particles emerges from a deep hole in a block of lead. The beam of particles is directed at a thin metal foil, approximately 10,000 atoms thick. The alpha particles are delected by the light they produce when they collide with scintilltaion screens, which are zinc sulfide-covered plates much like the front of the picture tube in a television set. The screen... [Pg.244]

Curie (Ci)—A unit of radioactivity. One curie equals that quantity of radioactive material in which there are 3.7xl010 nuclear transformations per second. The activity of 1 gram of radium is approximately 1 Ci. [Pg.272]

The activity is a measure of the quantity of radioactive material. For these radioactive materials it is customary to describe the activity as the number of disintegrations (transformations) per unit time. The unit of activity is the curie (Ci), which was originally related to the activity of one gram of radium, but is now defined as that quantity of radioactive material in which there are ... [Pg.302]

Radon is a naturally occurring, chemically inert, radioactive gas. It is colorless, odorless, and tasteless. It is part of the uranium-238 decay series, the direct decay product of radium-226. Radon moves to the earth s surface through tiny openings and cracks in soil and rocks. High concentrations of radon can be found in soils derived from uranium-bearing rocks, such as pitchblende and some... [Pg.1253]

Radon gas is the result of the radioactive decay of radium-226, an element that can be found in varying concentrations throughout many soils and bedrock. Figure 31.1 shows the series of elements that begins with uranium-238, and, after undergoing a series of radioactive decays, leads eventually to lead-210. At the time radium decays to become radon gas, energy is released.9 Of all the elements... [Pg.1255]

Marie Pierre Curie 1903, physics radioactivity, M.C. 1911, chemistry discovery of radium and polonium)... [Pg.110]

Lind (1961) defines radiation chemistry as the science of the chemical effects brought about by the absorption of ionizing radiation in matter. It can be said that in 1895, along with X-rays, Roentgen also discovered the chemical action of ionizing radiation. He drew attention to the similarity of the chemical effects induced by visible light and X-rays on the silver salt of the photographic plate. This was quickly followed by the discovery of radioactivity of uranium by Becquerel in 1896. In 1898, the Curies discovered two more radioactive elements—polonium and radium. [Pg.1]

These elements have all been named for famous scientists or for the places of their creation. For example, americium, berkelium, and californium were named after obvious geographical locations. Nobelium was named for the Nobel Institute, although later study proved it was not really created there. Curium was named for Marie Curie, the discoverer of radium. Einsteinium was named for the famous physicist, Albert Einstein. Fermium and lawrencium were named for Enrico Fermi and Ernest O. Lawrence, who made important discoveries in the field of radioactivity. Mendelevium was named for the discoverer of the periodic chart. [Pg.45]


See other pages where Radioactivity of radium is mentioned: [Pg.201]    [Pg.90]    [Pg.200]    [Pg.201]    [Pg.90]    [Pg.200]    [Pg.14]    [Pg.206]    [Pg.443]    [Pg.313]    [Pg.748]    [Pg.1036]    [Pg.1036]    [Pg.829]    [Pg.844]    [Pg.32]    [Pg.208]    [Pg.570]    [Pg.57]    [Pg.58]    [Pg.1289]    [Pg.82]    [Pg.4]    [Pg.27]    [Pg.52]    [Pg.53]    [Pg.63]    [Pg.90]    [Pg.98]    [Pg.107]    [Pg.114]   
See also in sourсe #XX -- [ Pg.29 , Pg.30 ]

See also in sourсe #XX -- [ Pg.3 , Pg.334 , Pg.335 , Pg.336 ]




SEARCH



Radioactive radium

Radium

Radium radioactivity

© 2024 chempedia.info