Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical anodic oxidation

The scope of oxidation chemistry is enormous and embraces a wide range of reactions and processes. This article provides a brief introduction to the homogeneous free-radical oxidations of paraffinic and alkylaromatic hydrocarbons. Heterogeneous catalysis, biochemical and hiomimetic oxidations, oxidations of unsaturates, anodic oxidations, etc, even if used to illustrate specific points, are arbitrarily outside the purview of this article. There are, even so, many unifying features among these areas. [Pg.334]

The anodic oxidation of the carboxylate anion 1 of a carboxylate salt to yield an alkane 3 is known as the Kolbe electrolytic synthesis By decarboxylation alkyl radicals 2 are formed, which subsequently can dimerize to an alkane. The initial step is the transfer of an electron from the carboxylate anion 1 to the anode. The carboxyl radical species 4 thus formed decomposes by loss of carbon dioxide. The resulting alkyl radical 2 dimerizes to give the alkane 3 " ... [Pg.183]

Many anodic oxidations involve an ECE pathway. For example, the neurotransmitter epinephrine can be oxidized to its quinone, which proceeds via cyclization to leukoadrenochrome. The latter can rapidly undergo electron transfer to form adrenochrome (5). The electrochemical oxidation of aniline is another classical example of an ECE pathway (6). The cation radical thus formed rapidly undergoes a dimerization reaction to yield an easily oxidized p-aminodiphenylamine product. Another example (of industrial relevance) is the reductive coupling of activated olefins to yield a radical anion, which reacts with the parent olefin to give a reducible dimer (7). If the chemical step is very fast (in comparison to the electron-transfer process), the system will behave as an EE mechanism (of two successive charge-transfer steps). Table 2-1 summarizes common electrochemical mechanisms involving coupled chemical reactions. Powerful cyclic voltammetric computational simulators, exploring the behavior of virtually any user-specific mechanism, have... [Pg.35]

Carboxylic acids can be converted by anodic oxidation into radicals and/or carbo-cations. The procedure is simple, an undivided beaker-type cell to perform the reaction, current control, and usually methanol as solvent is sufficient. A scale up is fairly easy and the yields are generally good. The pathway towards either radicals or carbocations can be efficiently controlled by the reaction conditions (electrode material, solvent, additives) and the structure of the carboxylic acids. A broad variety of starting compounds is easily and inexpensively available from natural and petrochemical sources, or by highly developed procedures for the synthesis of carboxylic acids. [Pg.142]

Oxidation of thiophene with Fenton-like reagents produces 2-hydroxythiophene of which the 2(570 One isomer is the most stable (Eq. 1) <96JCR(S)242>. In contrast, methyltrioxorhenium (Vn) catalyzed hydrogen peroxide oxidation of thiophene and its derivatives forms first the sulfoxide and ultimately the sulfone derivatives <96107211>. Anodic oxidation of aminated dibenzothiophene produces stable radical cation salts <96BSF597>. Reduction of dihalothiophene at carbon cathodes produces the first example of an electrochemical halogen dance reaction (Eq. 2) <96JOC8074>. [Pg.78]

Romakhin et al. [49] showed that anodically generated phosphoniumyl radicals can add onto alkenes to yield phosphonylated alkenes through an anodic oxi-dation/addition/anodic oxidation/elimination/nucleophilic attack sequence (Scheme 17). [Pg.55]

Anodic oxidation of the diphenylmethylenephosphorane (18) has been shown to give the radical (19). The P coupling constant for the radical shows that little delocalization of the unpaired electron onto the phos-... [Pg.232]

Anodic processes can also be used for tetraethyllead electrosynthesis. Here solutions of organometallic compounds are used the overall reaction is replacement of the metal in these compounds by another metal, lead. One such process uses a melt of the compound NaAl(C2H5)4, from which radicals QHj are produced anodically. The process is highly efficient, but it is not easy to isolate the TEL produced from the melt. More convenient is a commercial process involving the anodic oxidation of the Grignard reagent C2H5MgCl ... [Pg.287]

Radicals, (34), that subsequently dimerise, are also obtained through the anodic oxidation of carboxylate anions, RCO20, in the Kolbe electrolytic synthesis of hydrocarbons ... [Pg.307]

The manner in which radicals attack furans has been studied deeply and earlier misconceptions have been corrected, especially the idea that anodic oxidation in methanol involves methoxy radicals.248 Furan cation radi-... [Pg.216]

In many furans the dicationic state is probably much less easily reached, and it is usual to regard anodic oxidations as ECEC sequences. Thus one electron is removed and cation radical 110 reacts with a nucleophile (methanol, for example). The radical center can lose another electron and then react with another methanol molecule giving the product (Scheme 56).287-289 Thus the net result is usually the same as in Scheme (55). [Pg.227]

Yoshida has studied anodic oxidations in methanol containing cyanide to elucidate the electrode processes themselves.288 He finds that, under controlled potential ( 1.2 V), 2,5-dimethylfuran gives a methoxynitrile as well as a dimethoxy compound (Scheme 57). Cyanide competes for the primary cation radical but not for the secondary cations so that the product always contains at least one methoxy group. On a platinum electrode the cis-trans ratio in the methoxynitrile fraction is affected by the substrate concentration and by the addition of aromatic substances suggesting that adsorption on the electrode helps determine the stereochemistry. On a vitreous carbon electrode, which does not strongly adsorb aromatic species, the ratio always approaches the equilibrium value. [Pg.228]

Studies of cathodic reduction have been few. Amusingly, attempted anodic oxidation of the furyl ketone 123 actually resulted in cathodic reduction to the dimer 124 the corresponding ester was oxidized normally, however.301 Sometimes the dimethoxydihydrofurans formed in oxidation processes are reduced in a side reaction leading to the tetrahydrofuran derivatives.302 By using dimethylformamide as solvent instead of the protic solvents used formerly, a Czech group has demonstrated that the cathodic reductions of furans can produce fairly stable anion radicals having ESR spectra which agree well with theory.3023... [Pg.231]

Electrolysis of Grignard reagents in ether produces the saturated and unsaturated hydrocarbons to be expected if the anode oxidizes a real or potential carbanion to the corresponding free radical. [Pg.176]

This result suggests that in the anodic oxidation of type B, the cation radical formed from one of the two double bonds is stabilized through transannular interaction with another double bond. [Pg.762]

Compared with the anodic oxidation of a 1,3-diene, the cathodic reduction of a 1,3-diene may be less interesting since the resulting simple transformation to monoolefin and alkane is more conveniently achieved by a chemical method than by the electrochemical method. So far, only few reactions which are synthetically interesting have been studied15. The typical pattern of the reaction is the formation of an anion radical from 1,3-diene followed by its reaction with two molecules of electrophile as exemplified by the formation of the dicarboxylic acid from butadiene (equation 22)16. [Pg.768]

Anodic oxidation reactions have been utilized to reverse the polarity of enol ethers and to initiate radical cation cyclizations. As shown below, the ketene acetal 97 is oxidized on a... [Pg.151]

On the other hand, Becker et al. also have attempted the anodic oxidation of RfCH2CH2I in acetonitrile and they have achieved the anodic transformation of C8F, 7CH2CH2I to the corresponding acetamide, trifluoroacetate, and benzoate derivatives in good yields [35]. They propose a different reaction mechanism involving a hypervalent iodanyl radical intermediate as shown in Eq. 17. [Pg.24]

Recently, Germain et al. have also shown that the indirect anodic oxidation in fluorosulfuric add of fluorocarbon derivatives of the type RfCF2X (X — H, COOH, S03H, CH2OH, Br), which are not directly oxidizable, leads to fluorosulfates of the type FSG3CF3Rf (Eqs. 18 and 19) [37, 38], in these reactions, the peroxide (FS03)2, partially dissociated in its free radicals, is the in-situ electrochemically produced reactive intermediate as shown in Scheme 5.1. [Pg.24]

It should be recognized that the stability of cation radicals generated by anodic oxidation is also affected by jS-silyl substitution. Stabilization of car-bocations by a silyl group situated at the -position is well known as the / effect . The interaction of the C Si a orbital with the empty p orbital of the carbon stabilizes the carbocation. Therefore, we can expect similar effects of silicon for cation radical species. The interaction of the filled C-Si a orbital with the half-filled orbital of the carbon may stabilize the cation radical. [Pg.54]

The fact that the anodic oxidation of allylsilanes usually gives a mixture of two regioisomers suggests a mechanism involving the allyl cation intermediate (Scheme 3). The initial one-electron transfer from the allylsilane produces the cation radical intermediate [9], Although in the case of anodic oxidation of simple olefins the carbon-allylic hydrogen bond is cleaved [28], in this case the... [Pg.62]

Suda and coworkers described the anodic oxidation of 2-silyl-l,3-dithianes which have two sulfur atoms on the carbon adjacent to silicon [42], In this case, however, the C Si bond is not cleaved, but the C-S bonds are cleaved to give the corresponding acylsilanes (Scheme 12). Although the detailed mechanism has not been clarified as yet, the difference in the anode material seems to be responsible for the different pathway of the reaction. In fact, a platinum plate anode is used in this reaction, although a carbon anode is usually used for the oxidative cleavage of the C-Si bond. In the anodic oxidation of 2-silyl-l,3-dithianes the use of a carbon anode results in a significant decrease in the yield of acylsilanes. The effects of the nature of the solvent and the supporting electrolyte may also be important for the fate of the initially formed cation radical intermediate. Since various 2-alkyl-2-silyl-l,3-dithianes can be readily synthesized, this reaction provides a convenient route to acylsilanes. [Pg.67]

Schafer reported that the electrochemical oxidation of silyl enol ethers results in the homo-coupling products. 1,4-diketones (Scheme 25) [59], A mechanism involving the dimerization of initially formed cation radical species seems to be reasonable. Another possible mechanism involves the decomposition of the cation radical by Si-O bond cleavage to give the radical species which dimerizes to form the 1,4-diketone. In the case of the anodic oxidation of allylsilanes and benzylsilanes, the radical intermediate is immediately oxidized to give the cationic species, because oxidation potentials of allyl radicals and benzyl radicals are relatively low. But in the case of a-oxoalkyl radicals, the oxidation to the cationic species seems to be retarded. Presumably, the oxidation potential of such radicals becomes more positive because of the electron-withdrawing effect of the carbonyl group. Therefore, the dimerization seems to take place preferentially. [Pg.76]

Also azide radicals generated by anodic oxidation of sodium azide in the presence of olefins afford in acetic acid additive dimers, products of allylic substitution and... [Pg.144]


See other pages where Radical anodic oxidation is mentioned: [Pg.66]    [Pg.1929]    [Pg.66]    [Pg.1929]    [Pg.113]    [Pg.115]    [Pg.252]    [Pg.8]    [Pg.91]    [Pg.252]    [Pg.169]    [Pg.301]    [Pg.375]    [Pg.487]    [Pg.243]    [Pg.231]    [Pg.194]    [Pg.275]    [Pg.206]    [Pg.707]    [Pg.388]    [Pg.76]    [Pg.213]    [Pg.14]    [Pg.218]    [Pg.48]    [Pg.106]    [Pg.131]    [Pg.131]   
See also in sourсe #XX -- [ Pg.282 ]




SEARCH



Anode oxidation

Anodes oxides

Anodic oxidation

Anodic oxides

Oxidation radical

Oxide Radicals

© 2024 chempedia.info