Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Furan cations

The manner in which radicals attack furans has been studied deeply and earlier misconceptions have been corrected, especially the idea that anodic oxidation in methanol involves methoxy radicals.248 Furan cation radi-... [Pg.216]

The NH2 stretching mode of the complex between aniline and furan and its cation indicates193 that the main intermolecular interaction is due to a weak hydrogen bond of the N—H group and the oxygen of furan as depicted in 120. On the contrary, for the aniline furan cation complex 121 the main interaction is between the N—H group and the n system of the furan ring. [Pg.444]

Potentially, there are greater numbers of monomers that are suitable for cationic polymerization than for anionic, but the cationic method is less successful in block copolymer synthesis because, in many systems, the existence of a living carbocationic species is doubtful. Consequently, the involvement of carbocations in block copolymer synthesis tends to be limited to mixed reactions, e.g., the couphng of poly(tetrahydro-furan) cations with polystyryl anions to give an (A - B) diblock (Equation 5.19). [Pg.135]

The mass spectrum of 2-pyrone shows an abundant molecular ion and a very prominent ion due to loss of CO and formation of the furan radical cation. Loss of CO from 4-pyrone, on the other hand, is almost negligible, and the retro-Diels-Alder fragmentation pathway dominates. In alkyl-substituted 2-pyrones loss of CO is followed by loss of a hydrogen atom from the alkyl substituent and ring expansion of the resultant cation to the very stable pyrylium cation. Similar trends are observed with the benzo analogues of the pyrones, although in some cases both modes of fragmentation are observed. Thus, coumarins. [Pg.22]

In view of the overall increased reactivity of furan compared with thiophene it would be anticipated that furan would be less regioselective in its reactions with electrophiles than thiophene. Possible reasons for the high regioselectivity of furan in electrophilic substitution reactions include complex formation between substrates and reagents and the ability of heteroatoms to assist in the stabilization of cationic intermediates (80CHE1195). [Pg.44]

By using an aromatic aldehyde carrying an electron-releasing group the intermediate cation can be stabilized. This is the basis of the widely-used Ehrlich colour reaction for pyrroles, indoles and furans which have a free reactive nuclear position (Scheme 21). [Pg.54]

Acid-catalyzed hydrogen exchange is used as a measure of the comparative reactivity of different aromatic rings (see Table 5). These reactions take place on the neutral molecules or, at high acidities, on the cations. At the preferred positions the neutral isoxazole, isothiazole and pyrazole rings are all considerably more reactive than benzene. Although the 4-position of isothiazole is somewhat less reactive than the 4-position in thiophene, a similar situation does not exist with isoxazole-furan ring systems. [Pg.57]

The method described here gives higher yields of the macrocyclic tetraethers and allows the product from furan and cyclohexanone to be formed directly in 5-10% yield, whereas this product was previously obtained only by an indirect route. The added lithium perchlorate undoubtedly accelerates the reaction, since after short reaction times the product was isolated in 20% yield when the salt was present and in only 5% yield when the salt was absent. The lithium cation is presumably acting as a template which coordinates with the oxygen atoms of... [Pg.77]

Aromatic ethers and furans undergo alkoxylation by addition upon electrolysis in an alcohol containing a suitable electrolyte.Other compounds such as aromatic hydrocarbons, alkenes, A -alkyl amides, and ethers lead to alkoxylated products by substitution. Two mechanisms for these electrochemical alkoxylations are currently discussed. The first one consists of direct oxidation of the substrate to give the radical cation which reacts with the alcohol, followed by reoxidation of the intermediate radical and either alcoholysis or elimination of a proton to the final product. In the second mechanism the primary step is the oxidation of the alcoholate to give an alkoxyl radical which then reacts with the substrate, the consequent steps then being the same as above. The formation of quinone acetals in particular seems to proceed via the second mechanism. ... [Pg.94]

Julid investigated the behavior of terfuran 22 and bis(thienyl)furan 23 by cyclic voltammetry as well as the EPR spectra of the radical cations derived from these two compounds. Condensation of the diketone 20 with sulfuric acid furnished furan 22 in 18% yield, while reaction of diketone 21 with hydrochloric acid produced 23 in 84% yield.In a related report, Luo prepared oligomeric bis(thienyl)furans via similar methodology. ... [Pg.170]

B. Conjugate Acids 1. Furan, Pyrrole, and Thiophene Cations... [Pg.93]

The second group of reactions is called vicinal difunctionalization. They embrace the C2 and C3 positions of the furan ring simultaneously. Thus, complex 3 (X = O, R = R = R = H) reacts with benzaldehyde dimethyl acetal to give 4H-furanium cation (the product of electrophile addition at C4), which experiences further attack by the methoxide group with formation of the acetal 8 (950M2861). This reaction is possible in the presence of the Lewis acid (BF3—OEt2). Reaction with methyl vinyl ketone in methanol, when run in identical conditions. [Pg.3]

Intramolecular cycloaddition reactions of allylic cations with participation and/ or formation of heterocycles, mainly [4+3]-cycloaddition to furan system 97T6235. [Pg.211]

Hydroxymethylation and alkylation of furans, thiophenes, and pyrroles in the presence of H" " cations 98KGS3. [Pg.246]

The spontaneous polymerization of furan adsorbed on carbon black with or without SnCl4 vapours35 has been explained by a similar cationic mechanism. Also, the polymerization of gaseous furan on liquid acidic surfaces35 has the same origin, but in these systems the polymers suffer an acid-catalyzed hydrolysis of their tetrahydrofuran rings which produces a considerable proportion of hydroxyl and carbonyl groups. [Pg.59]

Furan derivatives with an aromatic system fused on one of the ring s double bonds, such as benzofuran, naphthofuran etc., can be polymerized cationically through the other ring s double bond. In these polymerizations the complications encountered with furan and alkylfurans [see Section III-A-l-c] are absent because only one unsaturation is available for propagation, the other being tied up in the benzene system... [Pg.63]

A comparison of the cationic polymerization of 2,3-dihydrofurans with that of furan and 2-alkylfurans shows that the complications of the latters two, arising from the dienic character of the monomers, obviously vanish when the monomer is a simple cyclic vinyl ether with just one reactive site, viz. the carbon-carbon double bond. However, it also points out that ring opening in the polymerization of furans by acidic catalysts in the absence of water is unlikely, because otherwise it would also occur to some degree in the polymerization of dihydrofurans. [Pg.66]

Stoicescu and Dimonie103 studied the polymerization of 2-vinylfuran with iodine in methylene chloride between 20 and 50 °C. The time-conversion curves were not analysed for internal orders but external orders with respect to catalyst and monomer were both unity. Together with an overall activation energy of 2.5 kcal/mole for the polymerization process, these were the only data obtained. Observations about the low DP s of the products, their dark colour, their lack of bound iodine and the presence of furan rings in the oligomers, inferred by infrared spectra (not reported), completed the experimental evidence. The authors proposed a linear, vinylic structure for the polymer, and a true cationic mechanism for its formation and discussed the occurrence of an initial charge-transfer complex on the... [Pg.72]

Of course, these conclusions do not rule out completely the occurrence of other reactions such as those listed above, but their contribution to the overall mechanism must be very small in the production of the oligomers. The dark colour of these products was attributed to hydride transfer reactions, similar in nature to those encountered in the cationic polymerization of 2-vinyl furan [see Section III-B-l-c)]. The subsequent process which transforms these oligomers into cross-linked resins was not investigated. [Pg.81]

Gcwdini, A. The Behaviour of Furan Derivatives in Polymerization Reactions. Vol. 25, pp. 47-96. Gandini, A. and Cheradamc, H. Cationic Polymerization. Initiation with Alkenyl Monomers. Vol. 34/35, pp. 1-289. [Pg.240]


See other pages where Furan cations is mentioned: [Pg.108]    [Pg.150]    [Pg.22]    [Pg.3]    [Pg.21]    [Pg.109]    [Pg.110]    [Pg.633]    [Pg.634]    [Pg.214]    [Pg.168]    [Pg.105]    [Pg.85]    [Pg.2]    [Pg.3]    [Pg.196]    [Pg.8]    [Pg.10]    [Pg.376]    [Pg.58]    [Pg.61]    [Pg.61]    [Pg.61]    [Pg.62]    [Pg.66]    [Pg.73]    [Pg.76]    [Pg.76]    [Pg.168]    [Pg.112]   
See also in sourсe #XX -- [ Pg.196 ]




SEARCH



Cationic polymerization, furans

Furan radical cation

© 2024 chempedia.info