Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Racemic mixtures, separating

Additional racemic mixture separations of trans 1,2- and 2,3-epoxy derivatives are provided by co-author Kagawa [1]. [Pg.671]

Pasteur was only 26 years old at the time and was unknown in scientific circles. He was concerned about the accuracy of his observations because a few years earlier, the well-known German organic chemist Eilhardt Mitscherlich had reported that crystals of the same salt were all identical. Pasteur immediately reported his findings to Jean-Baptiste Biot and repeated the experiment with Biot present. Biot was convinced that Pasteur had successfully separated the enantiomers of sodium ammonium tartrate. Pasteur s experiment also created a new chemical term. Tartaric acid is obtained from grapes, so it was also called racemic acid (racemus is Latin for a bunch of grapes ). When Pasteur found that tartaric acid was actually a mixture of enantiomers, he called it a racemic mixture. Separation of enantiomers is called the resolution of a racemic mixture. [Pg.212]

Diastereomeric relationships provide the basis on which a range of chemical and physical separation processes occur. The process oL resolution is the separation of a mixture containii equal amounts of a pair of enantiomers (racemic mixture). Separation is frequently effected by converting the mixture of enantiomers into a... [Pg.80]

The Z)-enantiomer of N-docosyl-leucine 2D-crystallises in an oblique unit cell, as expected. However, GIXD revealed a different oblique unit cell for the racemic mixture suggesting miscibility of the two enantiomers [152]. For myristoyl alanine monolayers, GIXD data indicated that a racemic mixture separated into 2D-crystalline islands of opposite chirality [153]. [Pg.240]

The Cahn-Ingold-Prelog (CIP) rules stand as the official way to specify chirahty of molecular structures [35, 36] (see also Section 2.8), but can we measure the chirality of a chiral molecule. Can one say that one structure is more chiral than another. These questions are associated in a chemist s mind with some of the experimentally observed properties of chiral compounds. For example, the racemic mixture of one pail of specific enantiomers may be more clearly separated in a given chiral chromatographic system than the racemic mixture of another compound. Or, the difference in pharmacological properties for a particular pair of enantiomers may be greater than for another pair. Or, one chiral compound may rotate the plane of polarized light more than another. Several theoretical quantitative measures of chirality have been developed and have been reviewed elsewhere [37-40]. [Pg.418]

Clearly, there is a need for techniques which provide access to enantiomerically pure compounds. There are a number of methods by which this goal can be achieved . One can start from naturally occurring enantiomerically pure compounds (the chiral pool). Alternatively, racemic mixtures can be separated via kinetic resolutions or via conversion into diastereomers which can be separated by crystallisation. Finally, enantiomerically pure compounds can be obtained through asymmetric synthesis. One possibility is the use of chiral auxiliaries derived from the chiral pool. The most elegant metliod, however, is enantioselective catalysis. In this method only a catalytic quantity of enantiomerically pure material suffices to convert achiral starting materials into, ideally, enantiomerically pure products. This approach has found application in a large number of organic... [Pg.77]

The separation of a racemic mixture into its enantiomeric components is termed resolution The first resolution that of tartaric acid was carried out by Louis Pasteur m 1848 Tartaric acid IS a byproduct of wine making and is almost always found as its dextrorotatory 2R 3R stereoisomer shown here m a perspective drawing and m a Fischer projection... [Pg.310]

Section 7 14 Resolution is the separation of a racemic mixture into its enantiomers It IS normally carried out by converting the mixture of enantiomers to a mixture of diastereomers separating the diastereomers then regenerating the enantiomers... [Pg.317]

Resolution (Section 7 14) Separation of a racemic mixture into Its enantiomers... [Pg.1292]

Crystallization Method. Such methods as mechanical separation, preferential crystallisation, and substitution crystallisation procedures are included in this category. The preferential crystallisation method is the most popular. The general procedure is to inoculate a saturated solution of the racemic mixture with a seed of the desired enantiomer. Resolutions by this method have been reported for histidine (43), glutamic acid (44), DOPA (45), threonine (46), A/-acetyl phenylalanine (47), and others. In the case of glutamic acid, the method had been used for industrial manufacture (48). [Pg.278]

The synthesis of dextromethorphan is an outgrowth of early efforts to synthesize the morphine skeleton. /V-Methy1morphinan(40) was synthesized in 1946 (58,59). The 3-hydroxyl and the 3-methoxy analogues were prepared by the same method. Whereas the natural alkaloids of opium are optically active, ie, only one optical isomer can be isolated, synthetic routes to the morphine skeleton provide racemic mixtures, ie, both optical isomers, which can be separated, tested, and compared pharmacologically. In the case of 3-methoxy-/V-methylmorphinan, the levorotatory isomer levorphanol [77-07-6] (levorphan) was found to possess both analgesic and antitussive activity whereas the dextrorotatory isomer, dextromethorphan (39), possessed only antitussive activity. Dextromethorphan, unlike most narcotics, does not depress ciUary activity, secretion of respiratory tract fluid, or respiration. [Pg.523]

Synthetic chiral adsorbents are usually prepared by tethering a chiral molecule to a silica surface. The attachment to the silica is through alkylsiloxy bonds. A study which demonstrates the technique reports the resolution of a number of aromatic compoimds on a 1- to 8-g scale. The adsorbent is a silica that has been derivatized with a chiral reagent. Specifically, hydroxyl groups on the silica surface are covalently boimd to a derivative of f -phenylglycine. A medium-pressure chromatography apparatus is used. The racemic mixture is passed through the column, and, when resolution is successful, the separated enantiomers are isolated as completely resolved fiactions. Scheme 2.5 shows some other examples of chiral stationary phases. [Pg.89]

The structure of a natural product is shown without any specification of stereochem-istiy. It is a pure substance which gives no indication of being a mixture of stereoisomers and has zero optical rotation. It is not a racemic mixture because it does not yield separate peaks on a chiral HPLC column. When the material is completely hydrolyzed, it gives a racemic sample of the product shown. Deduce the complete stereochemical structure of the natural product fiom this information. [Pg.122]

Whenever possible, the chemical reactions involved in the fonnation of diastereomers and their- conversion to separate enantiomers are simple acid-base reactions. For example, naturally occurring (5)-(—)-malic acid is often used to resolve fflnines. One such amine that has been resolved in this way is 1-phenylethylarnine. Amines are bases, and malic acid is an acid. Proton transfer from (5)-(—)-malic acid to a racemic mixture of (/ )- and (5)-1-phenylethylarnine gives a mixture of diastereorneric salts. [Pg.311]

The importance of chemical syntheses of a-amino acids on industrial scale is limited by the fact that the standard procedure always yields the racemic mixture (except for the achiral glycine H2N-CH2-COOH and the corresponding amino acid from symmetrical ketones R-CO-R). A subsequent separation of the enantiomers then is a major cost factor. Various methods for the asymmetric synthesis of a-amino acids on laboratory scale have been developed, and among these are asymmetric Strecker syntheses as well. ... [Pg.271]

Figure 3.7 [continued) (b) Chromatograms of (iii) the dichloromethane extract of strawberry fruit yoghurt analysed with an apolar primary column, with the heart-cut regions indicated, and (iv) a non-racemic mixture of y-deca-(Cio) and 7-dodeca-Cj2 lactones isolated by heart-cut transfer, and separated by using a chiral selective modified cyclodextrin column. Reproduced from A. Mosandl, et al J. High Resol. Chromatogr. 1989, 12, 532 (39f. [Pg.67]

Today, however, GC-GC coupling is seldom used to determine pesticides in environmental samples (2), although comprehensive MDGC has been applied to determine pesticides in more complex samples, such as human serum (19). On the other-hand, new trends in the pesticide market, which is now moving towards the production of optically active enantiomers and away from racemic mixtures, may make this area suitable for GC-GC application. The coupling of non-chiral columns to chiral columns appears to be a suitable solution to the separation problems that such a trend might cause. [Pg.337]


See other pages where Racemic mixtures, separating is mentioned: [Pg.88]    [Pg.292]    [Pg.302]    [Pg.99]    [Pg.118]    [Pg.282]    [Pg.212]    [Pg.88]    [Pg.1317]    [Pg.88]    [Pg.292]    [Pg.302]    [Pg.99]    [Pg.118]    [Pg.282]    [Pg.212]    [Pg.88]    [Pg.1317]    [Pg.659]    [Pg.309]    [Pg.310]    [Pg.311]    [Pg.311]    [Pg.79]    [Pg.186]    [Pg.241]    [Pg.272]    [Pg.98]    [Pg.388]    [Pg.624]    [Pg.310]    [Pg.311]    [Pg.311]    [Pg.75]    [Pg.316]    [Pg.66]    [Pg.70]   
See also in sourсe #XX -- [ Pg.24 , Pg.223 , Pg.314 ]




SEARCH



High-performance liquid racemic mixture separation

Mixture separating mixtures

Mixtures separating

Mixtures, separation

Racemates separation

Raceme mixture, chiral separation

Racemic mixture

Racemic mixtures separation)

Separations of racemic mixtures

© 2024 chempedia.info