Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantum chemistry semiempirical methods

The conformations of 3-substituted-2-benzothiazolinones have been studied by UV and IR spectroscopy and the quantum chemistry semiempirical method AMI <93Mi 306-06,93MI 306-07). 5-Acyl-2-(7V,7V-disubstituted amino)thiazoles unsubstituted or with a phenyl group at the 4-position, in solution exist predominantly as the carbonyl 0,S-syn rotamers (25a). On the other hand, a t-butyl group in the same position induces the 0,S-anti arrangement (25b) (Equation (3)) with the 4-methyl derivatives both forms are present <87JCS(P2)2305, 88JCS(P1)2209>. [Pg.383]

No Barrier Theory (NBT) [1,2] is a new approach to calculating rate constants in solution that uses an experimental equilibrium constant and an assumed mechanism as the only empirical information needed in order to calculate a rate constant. What is directly calculated is the free energy of activation but conversion of this to a rate constant is trivial. The saving thing about these calculations is that relatively low-level quantum chemistry computational methods suffice in many cases semiempirical methods are sufficient. NBT also provides a way to think qualitatively about whether a reaction is likely to be slow or fast thus, it can be used both qualitatively to think about mechanisms and quantitatively to predict rates. [Pg.113]

The usefulness of quantum-chemical methods varies considerably depending on what sort of force field parameter is to be calculated (for a detailed discussion, see [46]). There are relatively few molecular properties which quantum chemistry can provide in such a way that they can be used directly and profitably in the construction of a force field. Quantum chemistry does very well for molecular bond lengths and bond angles. Even semiempirical methods can do a good job for standard organic molecules. However, in many cases, these are known with sufficient accuracy a C-C single bond is 1.53 A except under exotic circumstances. Similarly, vibrational force constants can often be transferred from similar molecules and need not be recalculated. [Pg.52]

Equation (4-5) can be directly utilized in statistical mechanical Monte Carlo and molecular dynamics simulations by choosing an appropriate QM model, balancing computational efficiency and accuracy, and MM force fields for biomacromolecules and the solvent water. Our group has extensively explored various QM/MM methods using different quantum models, ranging from semiempirical methods to ab initio molecular orbital and valence bond theories to density functional theory, applied to a wide range of applications in chemistry and biology. Some of these studies have been discussed before and they are not emphasized in this article. We focus on developments that have not been often discussed. [Pg.83]

J. N. Murrell and A. J. Harget, Semi-empirical Self-consistent Molecular Orbital Theory of Molecules, Wiley-Interscience, London, 1972 G. H. Wagniere, Introduction to Elementary Molecular Orbital Theory and to Semiempirical Methods, Springer-Verlag, Berlin, 1976 J. Sadleij, Semi-empirical Methods of Quantum Chemistry, Wiley, New York, 1985. [Pg.258]

Many other approaches for finding a correct structural model are possible. A short description of ab-initio, density functional, and semiempirical methods are included here. This information has been summarized from the paperback book Chemistry with Computation An Introduction to Spartan. The Spartan program is described in the Computer Software section below.65 Another description of computational chemistry including more mathematical treatments of quantum mechanical, molecular mechanical, and statistical mechanical methods is found in the Oxford Chemistry Primers volume Computational Chemistry,52... [Pg.138]

Those who applied quantum mechanics to atoms and molecules had a wealth of chemists data at hand well-defined bond properties including dipole moments, index of refractions, and ultraviolet absorption qualities and polarizability as well as well-defined valence properties of atoms in molecules. If one attempted to set up a wave equation for the water molecule, for example, there were 39 independent variables, reducible to 20 by symmetry considerations. But the experimental facts of chemistry implied or required certain properties that made it possible to solve equations by semiempirical methods. "Chemistry could be said to be solving the mathematicians problems and not the other way around," according to Coulson. 148... [Pg.276]

The semiempirical molecular orbital (MO) methods of quantum chemistry [1-12] are widely used in computational studies of large molecules. A number of such methods are available for calculating thermochemical properties of ground state molecules in the gas phase, including MNDO [13], MNDOC [14], MNDO/d [15-18], AMI [19], PM3 [20], SAMI [21,22], OM1 [23], OM2 [24,25] MINDO/3 [26], SINDOl [27,28], and MSINDO [29-31]. MNDO, AMI, and PM3 are widely distributed in a number of software packages, and they are probably the most popular semiempirical methods for thermochemical calculations. We shall therefore concentrate on these methods, but shall also address other NDDO-based approaches with orthogonalization corrections [23-25],... [Pg.235]

Thiel, W. 2000. Semiempirical Methods in Modern Methods and Algorithms of Quantum Chemistry, Proceedings, 2nd Edn., Grotendorst, J., Ed., NIC Series, Vol. 3, John von Neumann Institute for Computing Jiilich, 261. [Pg.162]

The methods available for computing enthalpies of formation fall into two general groups those based on purely empirical schemes and those founded on quantum chemistry. The quantum chemical methods can be further divided into three types ab initio molecular orbital theory, density functional theory, and semiempirical molecular orbital theory. A summary of the types of method used to calculate enthalpies of formation is given in Table 2, along with some specific examples. This is not meant to be a comprehensive tabulation, but rather a list of some of the more popular approaches in use today. Table 3 names some of the commercially available computer programs having capabilities to calculate thermochemical data. [Pg.152]

Theoretical chemistry at UBC was further strengthened with the arrival of Delano Chong and Keith Mitchell in 1965 and 1966, respectively. Chong s interests in quantum chemistry have spanned the full range from semiempirical to ab initio molecular orbital methods. His long-standing interests in perturbation methods and constrained variations have figured prominently in his publications. He is probably best known for his attempts to calculate the X-ray and UV photoelectron spectra of molecules, often by means of perturbation corrections to Koopmans theorem.40 More recently he has shifted his focus to coupled pair functional methods and density functional methods, with a special interest in polarizabilities and hyperpolarizabilities.41... [Pg.240]

Chapter 1 outlined the tools that computational chemists have at their disposal, Chapter 2 set the stage for the application of these tools to the exploration of potential energy surfaces, and Chapter 3 introduced one of these tools, molecular mechanics. In this chapter you will be introduced to quantum mechanics, and to quantum chemistry, the application of quantum mechanics to chemistry. Molecular mechanics is based on classical physics, physics before modern physics one of the cornerstones of modem physics is quantum mechanics, and ab initio (Chapter 5), semiempirical (Chapter 6), and density functional (Chapter 7) methods belong to quantum chemistry. This chapter is designed to ease the way to an understanding of... [Pg.85]

The quantum mechanical methods described in this book are all molecular orbital (MO) methods, or oriented toward the molecular orbital approach ab initio and semiempirical methods use the MO method, and density functional methods are oriented toward the MO approach. There is another approach to applying the Schrodinger equation to chemistry, namely the valence bond method. Basically the MO method allows atomic orbitals to interact to create the molecular orbitals of a molecule, and does not focus on individual bonds as shown in conventional structural formulas. The VB method, on the other hand, takes the molecule, mathematically, as a sum (linear combination) of structures each of which corresponds to a structural formula with a certain pairing of electrons [16]. The MO method explains in a relatively simple way phenomena that can be understood only with difficulty using the VB method, like the triplet nature of dioxygen or the fact that benzene is aromatic but cyclobutadiene is not [17]. With the application of computers to quantum chemistry the MO method almost eclipsed the VB approach, but the latter has in recent years made a limited comeback [18],... [Pg.102]

The recent progress of computational quantum chemistry has made it possible to get realistic descriptions of vibrational frequencies for polyatomic molecules in solution. The first attempt in this direction was made by Rivail el al. [1] by exploiting a semiempirical QM molecular model coupled with a continuum description of the medium to compute vibrational frequency shifts for molecular solutes. An extension to ab initio QM methods, including the treatment of electron correlation effects and electrical and mechanical anharmonicities, was then proposed [2 1] in the framework of the Polarizable Continuum Model (PCM). [Pg.167]

The highly specific behavior of transition metal complexes has prompted numerous attempts to access this Holy Grail of the semi-empirical theory - the description of TMCs. From the point of view of the standard HFR-based semiempirical theory, the main obstacle is the number of integrals involving the d- AOs of the metal atoms to be taken into consideration. The attempts to cope with these problems have been documented from the early days of the development of semiempirical quantum chemistry. In the 1970s, Clack and coworkers [78-80] proposed to extend the CNDO and INDO parametrizations by Pople and Beveridge [39] to transition elements. Now this is an extensive sector of semiempirical methods, differing by expedients of parametrizations of the HFR approximation in the valence basis. These are, for example, in methods of ZINDO/1, SAMI, MNDO(d), PM3(tm), PM3 etc. [74,81-86], From the... [Pg.122]

A wide range of quantum-chemical methods have been used for studying properties of carbene analogs R2E (E = Ge, Sn, Pb) and various aspects of their chemistry. They include semiempirical methods (MNDO, AMI and PM3), ab initio calculations at various levels and approaches based on density functional theory (DFT) which, in the last decade, emerged as a reliable and economic tool for modeling ground state properties and reaction dynamics of intermediates. [Pg.811]

V. A. Gubanov, V. P. Zhukov, and A. O. Litinskii, Semiempirical Molecular Orbital Methods in Quantum Chemistry, Nauka, Moscow, 1976. [Pg.306]

Joanna Sadlej, Semiempirical Methods of CNDO, INDO, and NDDO Quantum Chemistry, Panstwowe Wydawnictwo Naukowe, Warsaw, 1977. [Pg.307]

Gerald A. Segal, Semiempirical Methods of Electronic Structure Calculation, Pt. A Techniques, in Modern Theoretical Chemistry, Vol. 7, Plenum, New York, 1977. Mark A. Ratner, John R. Sabin, and Samuel B. Trickey, Applications of Model Hamiltonians to the Electron Dynamics of Organic Charge Transfer Salts in Uncertainty Princ. Found. Quantum Mech., William Charles Price and Seymour S. Chissick, Eds., Wiley, Chichester, 1977. [Pg.307]

Nevertheless, when properly used, the intuitive reaction path represents a useful tool for investigating reaction mechanisms, especially in connection with semiempirical methods of quantum chemistry. [Pg.271]


See other pages where Quantum chemistry semiempirical methods is mentioned: [Pg.523]    [Pg.523]    [Pg.1]    [Pg.169]    [Pg.304]    [Pg.234]    [Pg.2]    [Pg.53]    [Pg.79]    [Pg.220]    [Pg.220]    [Pg.180]    [Pg.859]    [Pg.457]    [Pg.218]    [Pg.218]    [Pg.378]    [Pg.201]    [Pg.392]    [Pg.435]    [Pg.440]    [Pg.193]    [Pg.110]    [Pg.131]    [Pg.144]    [Pg.160]    [Pg.174]    [Pg.175]    [Pg.97]    [Pg.550]   


SEARCH



Quantum chemistry

Quantum chemistry methods

Quantum chemistry semiempirical

Quantum methods

Semiempirical

Semiempirical methods

© 2024 chempedia.info