Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction mechanism, investigation

This problem is an extension of problems 7-10 and 7-11 on the dehydrogenation of ethane to produce ethylene. It can be treated as an open-ended, more realistic exercise in reaction mechanism investigation. The choice of reaction steps to include, and many aspects of elementary gas-phase reactions discussed in Chapter 6 (including energy transfer) are significant to this important industrial reaction. Solution of the problem requires access to a computer software package which can handle a moderately stiff set of simultaneous differential equations. E-Z Solve may be used for this purpose. [Pg.173]

In the 1960s it became clear that, in general, several different types of MCRs can take place. The U-4CR was discovered and its reaction mechanism investigated. It was realized that the early part of the U-4CR corresponds to an equilibrium of a 3CR, where 1-3 and 4-6 participate. Subsequently, 5 and 6 form the a-adduct 15 of an isocyanide 13, and this intermediate rearranges into its final product [8,10,28]. [Pg.129]

More elaborate and ambitious studies on the dissolution reactions of silica were conducted by Xiao and Lasaga (1994, 1996). Their objective was to provide full descriptions of the reaction pathway of quartz dissolution in acidic and basic solutions, from the adsorption of H2O or OH on a site, the formation of possible reaction intermediates and transition states, to the hydrolysis of the Si-O-Si bonds. Also, their aim was to extract kinetic properties such as changes in activation energy, kinetic isotope effects, catalytic and temperature effects, and the overall rate law form. The reaction mechanisms investigated were... [Pg.508]

As a result, ESI-MS is ideal for the rapid screening of microscale reactions (thus minimizing wastage) and directing subsequent synthetic chemistry on the macroscopic scale [205]. The high sensitivity, the rapid analysis speed, and the capability to provide structural information on intermediates makes ESI-MS an excellent tool complementary and sometimes superior to electrochemistry and NMR for reaction mechanism investigation. [Pg.45]

At high temperature, the tendency to complex formation should decrease, simplifying the reaction mechanism. Investigation of the pressure dependence at high temperature is desirable (Fig. 18). [Pg.220]

Vibrational motion is thus an important primary step in a general reaction mechanism and detailed investigation of this motion is of utmost relevance for our understanding of the dynamics of chemical reactions. In classical mechanics, vibrational motion is described by the time evolution and l t) of general internal position and momentum coordinates. These time dependent fiinctions are solutions of the classical equations of motion, e.g. Newton s equations for given initial conditions and I Iq) = Pq. [Pg.1056]

An interesting rearrangement of the (4-methyl-2-thiazolyl)thioureas (263) has recently been reported (Scheme 160) (303). The reaction mechanism is currently under investigation. This reaction does not occur if the 4-methyl substituent in the thiazole ring of 263 is replaced by an hydrogen, which suggests an electrophilic attack on C-5 as the mechanism of this reaction. [Pg.95]

A common application of the direct calculation of molecular energy is the study of organic reaction mechanisms. You can investigate the energies of different potential intermediates, species not easily studied by experiment. A review by Thiel lists many such 39. Thiel, W. Semiempirical Methods Current Status and Perspectives Tetrahedron, 44 7393, 1988. [Pg.131]

Annular tautomerism does not occur in isothiazoles or benzisothiazoles. Substituent tautomers can sometimes be distinguished by chemical methods, but it is important that reaction mechanisms and the relative rates of interconversion of tautomeric starting materials or isomeric reaction products are carefully investigated. Physical methods only will be considered in this section, and references to original publications can be found in a comprehensive review (76AHC(S1)1). [Pg.145]

Laboratory investigations may possibly establish reaction mechanisms, but quantitative data for design purposes require pilot plant work with equipment of the type expected to be used in the plant. [Pg.2117]

I. Extensive discussions of techniques for studying reaction mechanisms are presented in E. S. Lewis, ed.. Investigation of Sates and Mechanism of Reactions, Techniques of Chemistry, 3rd ed., VoL VI, Part I, John Wiley Sons, New bric, 1974 C. F. Bemasconi, ed.. Investigation of Rates and Mechanism of Reactions, Techniques of Chemistry, 4th ed., Vfal. VI, Part I, John Wiley Sons, New York, 1986. [Pg.187]

Kinetic investigations cover a wide range from various viewpoints. Chemical reactions occur in various phases such as the gas phase, in solution using various solvents, at gas-solid, and other interfaces in the liquid and solid states. Many techniques have been employed for studying the rates of these reaction types, and even for following fast reactions. Generally, chemical kinetics relates to tlie studies of the rates at which chemical processes occur, the factors on which these rates depend, and the molecular acts involved in reaction mechanisms. Table 1 shows the wide scope of chemical kinetics, and its relevance to many branches of sciences. [Pg.1119]

Methods of the first type have been used for both qualitative and quantitative investigation. An important limitation is that the rates of interconversion of the tautomeric forms must be small as compared with those of the test reaction (s). The method is further complicated since the test reactions are sometimes complex and it is difficult to be certain that only one tautomer is reacting. An even more fundamental objection is that much chemical evidence is based on incorrect reaction mechanisms. Thus, the formation of condensation products (30) with aldehydes has repeatedly been quoted as evidence for structures of type 31 and against type 32,. whereas if 31 does react with an aldehyde it must either first tautomerize to 32 or ionize to 33. [Pg.321]

What are the details of the reaction mechanism for inorganic aromatic heterocycles While we are still arguing about aromatic substitutions, we wish to add this new challenge for future investigations. [Pg.359]

DET calculations on the hyperfine coupling constants of ethyl imidazole as a model for histidine support experimental results that the preferred histidine radical is formed by OH addition at the C5 position [00JPC(A)9144]. The reaction mechanism of compound I formation in heme peroxidases has been investigated at the B3-LYP level [99JA10178]. The reaction starts with a proton transfer from the peroxide to the distal histidine and a subsequent proton back donation from the histidine to the second oxygen of the peroxide (Scheme 8). [Pg.13]

The proton transfer in these clusters via the water bridge was found to be about three times as fast as a nonassisted transfer, underscoring the importance of the solvent for the reaction mechanism [98IJQ855]. In addition to the relative stabilities of the cytosine tautomers, the structures and properties of some cytosine derivatives have been investigated, mainly those of 5-hydroxycytosine 111 and 5,6-dihydroxycytosine 112 (Scheme 73) [99JST1, 99JST49]. [Pg.48]

The reaction mechanism of the DNA (cytosine-5)-methyltransferase-catalyzed cytosine methylation was investigated at the MP2 and DFT levels [98JA12895]. This system has been modeled by 1-methylcytosine 117, methylthiolate, and trimethylsulfonium. The cytosine methylation is initiated by an attack of the anionic methylthiolate at Cg of the cytosine ring (Scheme 77). The formation of the methylthiolate adduct 118 of the neutral 117 was found to be endothermic in the gas phase and in solution. However, the MP2 and DFT results differ... [Pg.50]

As is common in heterocyclic chemistry, many studies concern tautomeric equilibria. While quantum chemical calculations are straightforward for the question of the most stable isomer, experiments are sometimes very demanding. Therefore, quantum chemistry can easily provide answers that may require substantial experimental effort. Comparatively few studies concern the investigation of entire reaction paths. This is much more demanding than computing a limited number of tautomers, of course, but usually provides a very detailed picture of the reaction mechanism. In certain cases, it was only possible to judge the nature of a chemical reaction on the basis of quantum chemical calculations. [Pg.85]

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

There have been extensive investigations on the reaction mechanism. In most cases the reaction proceeds via initial nucleophilic addition of ammonia 2 to formaldehyde 1 to give adduct 5, which is converted into an iminium ion species 6 (note that a resonance structure—an aminocarbenium ion can be formulated) through protonation and subsequent loss of water. The iminium ion species 6 then reacts with the enol 7 of the CH-acidic substrate by overall loss of a proton ... [Pg.194]

The Prins reaction often yields stereospecifically the and-addition product this observation is not rationalized by the above mechanism. Investigations of the sulfuric acid-catalyzed reaction of cyclohexene 8 with formaldehyde in acetic acid as solvent suggest that the carbenium ion species 7 is stabilized by a neighboring-group effect as shown in 9. The further reaction then proceeds from the face opposite to the coordinating OH-group " ... [Pg.233]


See other pages where Reaction mechanism, investigation is mentioned: [Pg.146]    [Pg.299]    [Pg.82]    [Pg.87]    [Pg.160]    [Pg.6]    [Pg.230]    [Pg.146]    [Pg.299]    [Pg.82]    [Pg.87]    [Pg.160]    [Pg.6]    [Pg.230]    [Pg.2115]    [Pg.2117]    [Pg.2707]    [Pg.440]    [Pg.131]    [Pg.362]    [Pg.364]    [Pg.167]    [Pg.369]    [Pg.6]    [Pg.248]    [Pg.17]    [Pg.291]    [Pg.230]    [Pg.112]    [Pg.307]    [Pg.36]    [Pg.84]    [Pg.266]   
See also in sourсe #XX -- [ Pg.43 , Pg.375 ]

See also in sourсe #XX -- [ Pg.43 , Pg.375 ]

See also in sourсe #XX -- [ Pg.43 , Pg.375 ]

See also in sourсe #XX -- [ Pg.43 , Pg.375 ]




SEARCH



© 2024 chempedia.info