Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

2- Pyrrolines 2-functionalization

Heterocyclic enamines A -pyrroline and A -piperideine are the precursors of compounds containing the pyrrolidine or piperidine rings in the molecule. Such compounds and their N-methylated analogs are believed to originate from arginine and lysine (291) by metabolic conversion. Under cellular conditions the proper reaction with an active methylene compound proceeds via an aldehyde ammonia, which is in equilibrium with other possible tautomeric forms. It is necessary to admit the involvement of the corresponding a-ketoacid (12,292) instead of an enamine. The a-ketoacid constitutes an intermediate state in the degradation of an amino acid to an aldehyde. a-Ketoacids or suitably substituted aromatic compounds may function as components in active methylene reactions (Scheme 17). [Pg.295]

The hydroxamic acid function in most alicyclic and aromatic compounds is stable to hot dilute acid or alkali, and derivatives cannot undergo normal base-catalyzed Lessen rearrangement. Di Maio and Tardella," however, have shown that some alicyclic hydroxamic acids when treated with polyphosphoric acid (PPA) at 176°-195° undergo loss of CO, CO.2, or H2O, in a series of reactions which must involve earlj fission of the N—0 bond, presumably in a phosphoryl-ated intermediate. Thus, l-hydroxy-2- piperidone(108) gave carbon monoxide, 1-pyrroline (119), and the lactams (120 and 121). The saturated lactam is believed to be derived from disproportionation of the unsaturated lactam. [Pg.229]

A small library of highly functionalized pyrrolines 95 was synthesized by reaction of allylic and propargylic isocyanides 94 with thiols followed by radical cyclization (Scheme 33). The radical reaction was carried out using a radical initiator (AIBN) under flash heating microwave irradiation [67]. [Pg.232]

There is no associated impairment of hydroxyprohne catabolism. The metabolic block in type II hyperpro-linemia is at glutamate-7-semiaIdeliyde dehydrogenase, which also functions in hydroxyprohne catabolism. Both proline and hydroxyprohne catabohsm thus are affected and A -pyrroline-3-hydroxy-5-carboxylate (see Figure 30-10) is excreted. [Pg.250]

The enantiomerically pure indolizidine (—)-422 has been synthesized starting from L-malic acid diethyl ester 407. The hydroxyl function of L-malic acid diethyl ester 407 has been protected as dihydropyranyl ether 408 with 2/7-dihydropyran and Amberlyst 15 in pentane at room temperature. The diethyl ester 408 was then reduced with lithium aluminium hydride in diethyl ether under reflux and the newly generated hydroxyl functions then protected with mesyl chloride in the presence of triethylamine in dichloromethane at 0°C. This was converted into newly protected pyrroline nitrone 409 in 44% overall yield through a well-established method (Scheme 90). The regio-isomeric 5-pyrroline-iV-oxide 410 formed in 4% overall yield was easily separated by column chromatography <20000L2475>. [Pg.689]

Cleavage of aziridines has been employed in the asymmetric total synthesis of pancratistatin 57 [47], a compound that is the object of considerable attention thanks to its broad spectrum of antineoplastic activities [48]. The chemistry of vinylaziridines has for the most part been confined to their use in rearrangement sequences resulting in functionalized pyrrolines. Hence, because of the lack of data concerning the ring-opening of vinylaziridines with carbon nucleophiles,... [Pg.300]

An interesting strategy for pyrrolidine a,/3-functionalization has been developed <2005T1221>, starting from readily available endocyclic enamine derivatives. A two-step heteroannulation procedure involving iodoetherification of A -acyl-2-pyrrolines 216 giving 217 followed by radical cyclization gave access to the bicyclic compounds 218 which can be used in further transformations to form substituted pyrrolidines 219 and 220 (Scheme 22). [Pg.25]

Alike olefins, allenes also undergo palladium mediated addition in the presence of N-H or O-H bonds. Although these reactions show some similarity to Wacker-type processes, from the mechanistic point of view they are quite different. Allenes, such as the cr-aminoallene in 3.69., usually undergo addition with palladium complexes (e.g. carbopalladation in 3.69. and 3.70., or hydropalladation in 3.71.), which leads to the formation of a functionalized allylpalladium complex. Subsequent intramolecular nucleophilic attack by the amino group leads to the closure of the pyrroline ring.87... [Pg.54]

Benzopyrrolinone-functional polymers have been prepared via polymerization of 1-vinylbenzo[c]pyrrolin-2-one (1-vinylphthalimidine) (15) (73BCJ1752) and of 5-methyl-enebenzo[c]pyrrolin-2-one (methylidinephthalimide) derivatives (16) (72MI11100). The former polymerizes readily by both free radical and cationic processes and in general displays polymerization behavior quite similar to that of l-vinylpyrrolidin-2-one (1). [Pg.273]

Delauney, A.J. Verma, D.P.S. (19906). A soybean gene encoding A pyrroline-S-carboxylate reductase was isolated by functional complementation in Escherichia coli and found to be osmoregulated. Molecular and General Genetics 221, 299-305. [Pg.195]

These low selectivities were improved by changing the amine substituents of the catalysts 34 from diisopropyl/dicyclohexyl to C2-symmetric 2,5-dimethyl-pyrroline ring, leading to two diastereomeric catalysts 35 (Scheme 6.14), which were synthesized in the same way as catalysts 34 [9]. The catalytic competency of 35 was established using standard phase-transfer alkylation conditions to afford the alkylation product with up to 37% ee. Enantioselectivities obtained using diastereomers of the catalyst 35 were different, but not opposite, which suggests that the stereocenters function cooperatively in one diastereomer, but not in the other. [Pg.130]

The retrosynthesis of this compound by Batey and co-workers [96] recognized that the unprecedented hexahydropyrrolo[3,2-c]quinoline core could be synthesized using a three-component Pavarov hetero-Diels-Alder reaction [97]. For this synthetic strategy to be successful, however, reaction conditions that favor the exo approach of the dienophile over the endo approach had to be found. For this purpose, a variety of protic acids were tested, and it was found that the reaction was best carried out in the presence of camphorsulfonic acid (CSA). Indeed, a mixture of 4-aminobenzoate 200 and N-Cbz 2-pyrroline 201 were stirred at room temperature in the presence of catalytic CSA to afford exo cyclo-adduct 203 as the major product (Scheme 12.28). The N-Cbz 2-pyrroline served as both an aldehyde equivalent and a dienophile in this context. The Diels-Alder adduct 203 already bore all the requisite functionalities for the successful completion of the synthesis, which was achieved in six additional steps. [Pg.377]

Topaquinone (TPQ), the oxidized form of 2,4,5-trihydroxyphenylalanine (TOPA), is the cofactor of copper-containing amine oxidases. The following model compounds have been prepared in order to understand the catalytic function of TPQ the jV-pivaloyl derivative of 6-hydroxydopamine in aqueous acetonitrile [38] topaquinone hydantoin and a series of 2-hydroxy-5-alkyl-l,4-benzoquinones in anhydrous acetonitrile (o- as well as />-quinones) [39] 2-hydroxy-5-methy 1-1,4-benzoquinone in aqueous system [40] and 2,5-dihydroxy-1,4-benzoquinone [41]. Reaction of model compounds with 3-pyrrolines revealed why copper-quinopro-tein amine oxidases cannot oxidize a secondary N [42], The studies clearly showed that certain model compounds do not require the presence of Cu for benzylamine oxidation whereas TPQ does [38,40] the aminotransferase mechanism proceeds via the -quinone form [39] the 470 nm band can be ascribed to a 71-71 transition of TPQ in />-quinonic form with the C-4 hydroxyl ionized but hydrogen bonded to some residue [40] hydrazines attack at the C-5 carbonyl, forming an adduct in the azo form [41], Electrochemical characterization has been carried out for free TPQ [43],... [Pg.569]

This above result was only obtained with maleimide as the dipolarophile. With dimethyl fumarate and fumaronitrile, A2-pyrrolines are obtained, probably because of the acidity of the hydrogen atoms a- to ester and nitrile functionalities. Reaction with alkynes produces pyrrole derivatives in good to excellent yields and with aromatic aldehydes leads regioselectively to oxazolidines in moderate yields.263... [Pg.345]

In summary, the metal can be readily removed from both 1//-pyrrole and 3-pyrroline (including azanorbomene) complexes to give a wide variety of highly functionalized molecules not readily obtained from the aromatic precursors without the use of osmium. The inherent instability of 2-pyrrolines prevents clean decomplexation unless quatemization or acylation of the nitrogen is carried out prior to oxidation of the metal. [Pg.33]

The regioselectivity of the 1,3-dipolar cycloadditions of azides to alkenes is usually difficult to predict due to the similar energies for the transition states which involve either the HOMO (dipole) or the LUMO (dipole). The results of a study which utilized 5-alkoxy-3-pyrrolin-2-ones as dipolar-ophiles in reactions with a variety of aryl azides seemed to reflect this problem the results suggested that the low regioselectivity observed was due to the frontier molecular orbital interactions between dipole and dipolarophile, and not any steric hindrance offered by the 5-alkoxy function <84H(22)2363>. [Pg.111]

Many pyrrolizidine alkaloids are metabolized to toxic pyrrole metabolites in the liver by mixed-function oxidases. The structural and chemical features necessary for the formation of these metabolites have been discussed.77 The most important features, in addition to the 3-hydroxymethyl-3-pyrroline system, are steric hindrance to hydrolysis of the ester, lipophilic character (favouring attack by the hepatic microsomal enzymes), and the presence of a conformation that allows preferential oxidation of the pyrroline ring rather than 7V-oxidation. The alkylating activities of a series of these pyrrole derivatives have been examined.78... [Pg.68]

The use of 1,1-diiodomethane as an electrophile in the Birch reduction (with lithium in liquid ammonia) of electron-deficient pyrroles 915 furnished pyrrolines 916 (in high to excellent yields), which provided access to the synthetically important functionalized 5,6-dihydro-2(l//)-pyridinones 917 (via radical ring expansion), substructures commonly found in biologically active natural products (Scheme 177) <2004CC1422>. 2-(Chloroalkyl)-substituted pyrrolines 919 were duly prepared by the reductive alkylation (with l-chloro-3-iodopropane or 1-chloro -iodobu-tane) of electron-deficient pyrrole 918. Allylic oxidation then furnished lactams 920 (Scheme 178). [Pg.180]

The final series of five procedures presents optimized preparations of a variety of useful organic compounds. The first procedure in this group describes the preparation of 3-BROMO-2(H)-PYRAN-2-ONE, a heterodiene useful for (4+2] cycloaddition reactions. An optimized large scale preparation of 1,3,5-CYCLOOCTATRIENE, another diene useful for [4+2] cycloaddition, is detailed from the readily available 1,5-cyclooctadiene. Previously, the availability of this material has depended on the commercial availability of cyclooctatetraene at reasonable cost. A simple large scale procedure for the preparation of 3-PYRROLINE is then presented via initial alkylation of hexamethylenetetramine with (Z)-1,4-dichloro-2-butene. This material serves as an intermediate for the preparation of 2,5-disubstituted pyrroles and pyrrolidines via heteroatom-directed metalation and alkylation of suitable derivatives. The preparation of extremely acid- and base-sensitive materials by use of the retro Diels-Alder reaction is illustrated in the preparation of 2-CYCLOHEXENE-1.4-DIONE, a useful reactive dienophile and substrate for photochemical [2+2] cycloadditions. Functionalized ferrocene derivatives... [Pg.297]

Urethanes analogous to the amides of the previous section undergo similar deprotonation followed by alkylation and condoisation reactions. For example, 2,4,6-tri-r-butylphenol may be converted into the corresponding urethane which can be further functionalized (equation 32). N-Carbomethoxy-3-pyrroline has been convoted into both the trail pheromone for the Pharaoh ant and gq)hyrotoxin 223 by using regiospecific alkylations (Scheme 3). ° Similar tqjproaches were used in the preparation of the natural product supinidine. Piperidines also have been alkylated via the r-BOC-protected amines. ... [Pg.226]

Magedov IV, Luchetti G, Evdokimov NM et al (2008) Novel three-component synthesis and antiproliferative properties of diversely functionalized pyrrolines. Bioorg Med Chem Lett 18 1392-1396... [Pg.285]

Insoluble polymer-supported dipolarophiles such as 92 were used to mask the nitrone moiety of the chiral pyrroline A-oxide 91 to prevent racemization at the vicinal stereogenic center by temporary formation of the resin linked isoxazolidines 93. A thermally induced 1,3-dipolar cycloreversion was used to cleave the product from the resin and restore the 1,3-dipole functionality which underwent intramolecolar 1,3-DC to afford the enantiomerically pure tricyclic isoxazolidine 95 <03SL1889>. [Pg.290]


See other pages where 2- Pyrrolines 2-functionalization is mentioned: [Pg.50]    [Pg.300]    [Pg.699]    [Pg.142]    [Pg.833]    [Pg.344]    [Pg.92]    [Pg.552]    [Pg.142]    [Pg.251]    [Pg.1711]    [Pg.1811]    [Pg.86]    [Pg.688]    [Pg.92]    [Pg.183]    [Pg.135]    [Pg.183]    [Pg.333]    [Pg.97]    [Pg.220]    [Pg.85]    [Pg.251]    [Pg.270]    [Pg.273]    [Pg.324]    [Pg.307]    [Pg.174]   


SEARCH



Pyrroline

© 2024 chempedia.info