Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interactions between dipoles

This fomuila does not include the charge-dipole interaction between reactants A and B. The correlation between measured rate constants in different solvents and their dielectric parameters in general is of a similar quality as illustrated for neutral reactants. This is not, however, due to the approximate nature of the Bom model itself which, in spite of its simplicity, leads to remarkably accurate values of ion solvation energies, if the ionic radii can be reliably estimated [15],... [Pg.837]

The chiral recognition mechanism for these types of phases was attributed primarily to hydrogen bonding and dipole—dipole interactions between the analyte and the chiral selector in the stationary phase. It was postulated that chiral recognition involved the formation of transient five- and seven-membered association complexes between the analyte and the chiral selector (117). [Pg.70]

Figure 4 shows the measured angle of 105° between the hydrogens and the direction of the dipole moment. The measured dipole moment of water is 1.844 debye (a debye unit is 3.336 x 10 ° C m). The dipole moment of water is responsible for its distinctive properties in the Hquid state. The O—H bond length within the H2O molecule is 0.96 x 10 ° m. Dipole—dipole interaction between two water molecules forms a hydrogen bond, which is electrostatic in nature. The lower part of Figure 4 (not to the same scale) shows the measured H-bond distance of 2.76 x 10 ° m or 0.276 nm. [Pg.208]

This dispersion interaction must be added to the dipole-dipole interactions between molecules, such as HCl, NH3 and H2O which have a permanent dipole, fi. The magnitude of die dipole moment depends on tire differences in electronegativity of the atoms in the molecule. Here again, the energy of interaction varies as (orientation effect). [Pg.116]

The relative stereochemistry of hyperaspine (1) was determined by 2D NMR and MS methods. It has a m-fused bicyclic conformation 82 (01TL4621). The tram-fused one is disfavored by an axial pentyl group at C(8) and by a destabilising dipole-dipole interaction between the N and O atoms, which does not exist in the alternative cis conformation. [Pg.240]

As charge-dipole interaction between the electron and the atom is small, the perturbation theory expansion may be used to estimate f. The odd terms of this expansion disappear after averaging over impact parameters due to isotropy of collisions. In the second order approximation only those elements of P that are bilinear in V are non-zero. Straightforward calculation showed [176] that all components of the Stark structure are broadened but only those for which m = 0 interfere with each other ... [Pg.129]

Consequently one of the key experimental observations of electrochemical promotion obtains a firm theoretical quantum mechanical confirmation The binding energy of electron acceptors (such as O) decreases (increases) with increasing (decreasing) work function in a linear fashion and this is primarily due to repulsive (attractive) dipole-dipole interactions between O and coadsorbed negative (positive) ionically bonded species. These interactions are primarily through the vacuum and to a lesser extent through the metal . [Pg.270]

The parameter a in Equation (11.6) is positive for electrophobic reactions (5r/5O>0, A>1) and negative for electrophilic ones (3r/0Oelectrochemical promotion behaviour is frequently encountered, leading to volcano-type or inverted volcano-type behaviour. However, even then equation (11.6) is satisfied over relatively wide (0.2-0.3 eV) AO regions, so we limit the present analysis to this type of promotional kinetics. It should be remembered thatEq. (11.6), originally found as an experimental observation, can be rationalized by rigorous mathematical models which account explicitly for the electrostatic dipole interactions between the adsorbates and the backspillover-formed effective double layer, as discussed in Chapter 6. [Pg.501]

Doubling the separation of polar molecules reduces the strength of the interaction by a factor of 26 = 64, and so dipole-dipole interactions between rotating molecules have a significant effect only when the molecules are very close. We can now start to understand why the kinetic model accounts for the properties of gases so well gas molecules rotate and are far apart for most of the time, so any intermole-cular interactions between them are very weak. Equation 4 also describes attractions between rotating molecules in a liquid. However, in the liquid phase, molecules are closer than in the gas phase and therefore the dipole-dipole interactions are much stronger. [Pg.302]

The TEM image of the PVP capped CdSe at 5 hr in figure 6A showed small, spherical particles with some aggregation. The aggregation is due to the oriented attachment between the spherical nanoparticles as a result of dipole-dipole interactions between the highly... [Pg.177]

Spin-spin relaxation is primarily induced by magnetic dipole interactions between paramagnetic ions. Usually, the most important spin-spin relaxation process is the so-called cross-relaxation process in which a transition of an ion / from the state K) to toe state is accompanied by a transition of another ion j from the... [Pg.214]

D is the dipole-dipole interaction between the slow relaxing carotenoid radical and the fast relaxing Ti3+ ion r is the interspin distance... [Pg.183]

The physical interpretation of the anisotropic principal values is based on the classical magnetic dipole interaction between the electron and nuclear spin angular momenta, and depends on the electron-nuclear distance, rn. Assuming that both spins can be described as point dipoles, the interaction energy is given by Equation (8), where 6 is the angle between the external magnetic field and the direction of rn. [Pg.506]

The relative stereochemistry of hyperaspine 93 was determined by 2-D NMR spectroscopic and mass spectrometry (MS) methods. It has a m-fused bicyclic conformation 93a <2001TL4621>. The trans-fused one is disfavored by an axial pentyl group at C-8 and by a destabilizing dipole-dipole interaction between the N- and O-atoms, which does not exist in the alternative //.(-conformation. The geminal coupling constant of C( 1 )H2 in 93 (11.0 Hz), and that of its 6-hydroxy derivative (11.2 Hz), indicates that they exist preferentially in / //-conformations, whereas their 6-epimers adopt trans-conformations (9.3 and 8.4 Hz, respectively) <2005EJ01378>. Nuclear Overhauser enhancement spectroscopy (NOESY) studies also confirmed the stereochemistry of 93 by the marked nuclear Overhauser effect (NOE) correlation between H-3 and H-4a <20030L5063>. [Pg.94]

It is instructive to compare these predictions with the results of computer simulations. This comparison, however, requires care. In practice, the computed values of A A exhibit considerable system-size dependence, i.e., they vary with the size of the simulation box. This is because charge-dipole interactions between the solute and... [Pg.42]

In molecularly rigid systems, the direct (through-space) dipole-dipole interaction between nuclear spins I = fe is normally the dominant source of broadening of the NMR lineshape. For a pair of similar nuclear spins i and j in a magnetic field Hq the dipolar splitting in their spectrum is given by... [Pg.280]


See other pages where Interactions between dipoles is mentioned: [Pg.189]    [Pg.3018]    [Pg.3024]    [Pg.218]    [Pg.236]    [Pg.116]    [Pg.38]    [Pg.78]    [Pg.110]    [Pg.493]    [Pg.295]    [Pg.545]    [Pg.304]    [Pg.331]    [Pg.32]    [Pg.169]    [Pg.1050]    [Pg.297]    [Pg.476]    [Pg.136]    [Pg.99]    [Pg.31]    [Pg.454]    [Pg.159]    [Pg.545]    [Pg.216]    [Pg.20]    [Pg.502]    [Pg.185]    [Pg.335]    [Pg.331]    [Pg.201]    [Pg.75]    [Pg.843]    [Pg.836]   
See also in sourсe #XX -- [ Pg.19 , Pg.126 ]




SEARCH



Dipole interacting

Dipole interactions

Dipole moments molecular interactions between

Electric dipoles, interaction between

Interactions between molecules dipole-quadrupole

© 2024 chempedia.info