Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Purine synthetase

Seasonal variations in the metabolic fate of adenine nucleotides prelabelled with [8—1-4C] adenine were examined in leaf disks prepared at 1-month intervals, over the course of 1 year, from the shoots of tea plants (Camellia sinensis L. cv. Yabukita) which were growing under natural field conditions by Fujimori et al.33 Incorporation of radioactivity into nucleic acids and catabolites of purine nucleotides was found throughout the experimental period, but incorporation into theobromine and caffeine was found only in the young leaves harvested from April to June. Methy-lation of xanthosine, 7-methylxanthine, and theobromine was catalyzed by gel-filtered leaf extracts from young shoots (April to June), but the reactions could not be detected in extracts from leaves in which no synthesis of caffeine was observed in vivo. By contrast, the activity of 5-phosphoribosyl-1-pyrophosphate synthetase was still found in leaves harvested in July and August. [Pg.20]

Such enzymes catalyse the condensation of specific compounds, accompanied by the breakdown of a pyrophosphate bond in adenosine triphosphate (10.64). Adenosine is the condensation product of a pentose (D-ribofuranose) and a purine (adenine). Scheme 10.15 shows the action of glutamine synthetase on a mixture of L-glutamic acid (10.65) and... [Pg.80]

The hypE proteins are 302-376 residues long and appear to consist of three domains. Domain 1 shows sequence identity to a domain from phosphoribosyl-aminoimida-zole synthetase which is involved in the fifth step in de novo purine biosynthesis and to a domain in thiamine phosphate kinase which is involved in the synthesis of the cofactor thiamine diphosphate (TDP). TDP is required by enzymes which cleave the bond adjacent to carbonyl groups, e.g. phosphoketolase, transketolase or pyruvate decarboxylase. Domain 2 also shows identity to a domain found in thiamine phosphate kinase. Domain 3 appears to be unique to the HypF proteins. [Pg.82]

The first step of this sequence, which is not unique to de novo purine nucleotide biosynthesis, is the synthesis of 5-phosphoribosylpyrophosphate (PRPP) from ribose-5-phosphate and adenosine triphosphate. Phosphoribosyl-pyrophosphate synthetase, the enzyme that catalyses this reaction [278], is under feedback control by adenosine triphosphate [279]. Cordycepin interferes with thede novo pathway [229, 280, 281), and cordycepin triphosphate inhibits the synthesis of PRPP in extracts from Ehrlich ascites tumour cells [282]. Formycin [283], probably as the triphosphate, 9-0-D-xylofuranosyladenine [157] triphosphate, and decoyinine (LXXlll) [284-286] (p. 89) also inhibit the synthesis of PRPP in tumour cells, and this is held to be the blockade most important to their cytotoxic action. It has been suggested but not established that tubercidin (triphosphate) may also be an inhibitor of this reaction [193]. [Pg.93]

As the first committed step in the biosynthesis of AMP from IMP, AMPSase plays a central role in de novo purine nucleotide biosynthesis. A 6-phosphoryl-IMP intermediate appears to be formed during catalysis, and kinetic studies of E. coli AMPSase demonstrated that the substrates bind to the enzyme active sites randomly. With mammalian AMPSase, aspartate exhibits preferred binding to the E GTPTMP complex rather than to the free enzyme. Other kinetic data support the inference that Mg-aspartate complex formation occurs within the adenylosuccinate synthetase active site and that such a... [Pg.36]

Primary gout can be caused by overproduction of purine catabolites due to X-linked mutations of PRPP synthetases that render the enzyme insensitive to allosteric inhibitors. [Pg.146]

The answer is E. Methotrexate is an analog of folic acid that binds with very high affinity to the substrate-binding site of dihydrofolate reductase, the enzyme that catalyzes conversion of DHF to THE, which is used in various forms by enzymes of both the purine and pyrimidine de novo synthetic pathways. Thus, synthesis of dTMP from dUMP catalyzed by thymidylate synthetase and several steps in purine synthesis catalyzed by formyltransferase are indirectly blocked by the action of methotrexate because both those enzymes require THE coenzymes. [Pg.150]

Both the sulfonamides and trimethoprim interfere with bacterial folate metabolism. For purine synthesis tetrahydrofolate is required. It is also a cofactor for the methylation of various amino acids. The formation of dihydrofolate from para-aminobenzoic acid (PABA) is catalyzed by dihydropteroate synthetase. Dihydrofolate is further reduced to tetrahydrofolate by dihydrofolate reductase. Micro organisms require extracellular PABA to form folic acid. Sulfonamides are analogues of PABA. They can enter into the synthesis of folic acid and take the place of PABA. They then competitively inhibit dihydrofolate synthetase resulting in an accumulation of PABA and deficient tetrahydrofolate formation. On the other hand trimethoprim inhibits dihydrofolate... [Pg.413]

Methotrexate is a folic acid analogue. Its mechanism of action is based on the inhibition of dihydrofolate reductase. Inhibition of dihydrofolate reductase leads to depletion of the tetrahydrofolate cofactors that are required for the synthesis of purines and thymidylate (see Fig. 2). Enzymes that are required for purine and thymidylate synthesis are also directly inhibited by the polyglutamates of methotrexate which accumulate with dihydrofolate reductase inhibition. The mechanisms that can cause resistance include decreased transport of methotrexate into the tumor cells, a decreased affinity of the antifolate for dihydrofolate reductase, increased concentrations of intracellular dihydrofolate reductase and decreased thymidylate synthetase activity. [Pg.451]

Pemetrexed is chemically similar to folic acid. It inhibits three enzymes used in purine and pyrimidine synthesis - thymidylate synthetase, dihydrofolate reductase, and glycinamide ribonucleotide formyl transferase. By inhibiting the formation of precursor purine and pyrimidine nucleotides, pemetrexed prevents the formation of DNA and RNA. In 2004 it was approved for treatment of malignant pleural mesothelioma and as a second-line agent for the treatment of non-small cell lung cancer. Adverse effects include gastrointestinal complaints, bone marrow suppression, alopecia, allergic and neurotoxic reactions. [Pg.452]

PRPP is an "activated pentose" that participates in the synthesis of purines and pyrimidines, and in the salvage of purine bases (see p. 294). Synthesis of PRPP from ATP and ribose 5-phosphate is catalyzed by PRPP synthetase (ribose phosphate pyrophosphokinase, Figure 22.6). This enzyme is activated by inorganic phosphate (Pi) and inhibited by purine nucleotides (end-product inhibition). [Note The sugar moiety of PRPP is ribose, and therefore ribonucleotides are the end products of de novo purine synthesis. When deoxy-ribonucleotides are required for DNA synthesis, the ribose sugar moiety is reduced (see p. 295).]... [Pg.291]

Didanosine is a synthetic purine nucleoside analog that inhibits the activity of reverse transcriptase in HIV-1, HIV-2, other retroviruses and zidovudine-resistant strains. A nucleobase carrier helps transport it into the cell where it needs to be phosphorylated by 5 -nucleoiidase and inosine 5 -monophosphate phosphotransferase to didanosine S -monophosphate. Adenylosuccinate synthetase and adenylosuccinate lyase then convert didanosine 5 -monophosphate to dideoxyadenosine S -monophosphate, followed by its conversion to diphosphate by adenylate kinase and phosphoribosyl pyrophosphate synthetase, which is then phosphorylated by creatine kinase and phosphoribosyl pyrophosphate synthetase to dideoxyadenosine S -triphosphate, the active reverse transcriptase inhibitor. Dideoxyadenosine triphosphate inhibits the activity of HIV reverse transcriptase by competing with the natural substrate, deoxyadenosine triphosphate, and its incorporation into viral DNA causes termination of viral DNA chain elongation. It is 10-100-fold less potent than zidovudine in its antiviral activity, but is more active than zidovudine in nondividing and quiescent cells. At clinically relevant doses, it is not toxic to hematopoietic precursor cells or lymphocytes, and the resistance to the drug results from site-directed mutagenesis at codons 65 and 74 of viral reverse transcriptase. [Pg.178]

A wide range of compounds also inhibit a number of the enzyme systems that are involved in the biosynthesis of purines and pyrimidines in bacteria. For example, sulphonamide bacteriostatics inhibit dihydropteroate synthetase, which prevents the formation of folic acid in both humans and bacteria. However, although both mammals and bacteria synthesize their folic acid from PABA (Figure 7.12), mammals can also obtain it from their diet. In contrast, trimethoprim specifically inhibits bacterial DHF, which prevents the conversion... [Pg.150]

Purine ATP lie tRNA synthetase Irradiation at 254 nm. Labeling yield limited to 15 % by photoinactivation of the enzyme (Yue and Schimmel, 1977). [Pg.16]

Unlike in purine biosynthesis, the pyrimidine ring is synthesized before it is conjugated to PRPP. The first reaction is the conjugation of carbamoyl phosphate and aspartate to make N-carbamoylaspartate. The carbamoyl phosphate synthetase used in pyrimidine biosynthesis is located in the cytoplasm, in contrast to the carbamoyl phosphate used in urea synthesis, which is made in the mitochondrion. The enzyme that carries out the reaction is aspartate transcarbamoylase, an enzyme that is closely regulated. [Pg.109]

Production of urea by cestodes suggests the existence of the urea (Krebs-Henseleit) cycle, which is shown in Fig. 6.11. One of the key enzymes, arginase, has been widely reported in cestodes (796, 185-187). However, some of the other enzymes, notably carbamyl phosphate synthetase and ornithine transcarbamyl, are either absent or present in only low amounts (39) and it is doubtful if a complete cycle operates in cestodes. It is likely that the urea excreted by tapeworms comes from the activity of arginase alone. The uric acid produced and excreted by cestodes probably arises from the breakdown of purines (39). [Pg.136]

Aimi,J., Qiu, H., Williams, J., Zalkin, H., and Dixon, J. E. (1990). De novo purine nucleotide biosynthesis cloning of human and avian cDNAs encoding the trifunctional glycinam-ide ribonucleotide synthetase-aminoimidazole ribonucleotide synthetase-glycinamide ribonucleotide transformylase by functional complementation in E. colt. Nucleic Acids Res., 18, 6665-6672. [Pg.68]

Kan,J. L.jJannatipour, M., Taylor, S. M., and Moran, R. G. (1993). Mouse cDNAs encoding a trifunctional protein of de novo purine synthesis and a related single-domain glyci-namide ribonucleotide synthetase. Gene, 137, 195—202. [Pg.71]

Oxidation of DNA, pyrimidines, and purines Inhibition of polysaccharide synthesis Oxidation of indoleacetic acid Inhibition of cellulose synthetase, phospho-glucomutase, UDPG pyrophosphorylase... [Pg.49]

Cytosol Glycolysis, glycogenesis and glycogenolysis, hexose monophosphate pathway, fatty acid synthesis, purine and pyrimidine catabolism, aminoacyl-tRNA synthetases... [Pg.111]


See other pages where Purine synthetase is mentioned: [Pg.148]    [Pg.307]    [Pg.14]    [Pg.85]    [Pg.254]    [Pg.265]    [Pg.39]    [Pg.149]    [Pg.368]    [Pg.453]    [Pg.231]    [Pg.297]    [Pg.302]    [Pg.442]    [Pg.494]    [Pg.98]    [Pg.263]    [Pg.1368]    [Pg.1485]    [Pg.36]    [Pg.346]    [Pg.149]    [Pg.70]    [Pg.231]    [Pg.33]    [Pg.35]    [Pg.39]    [Pg.42]    [Pg.271]   
See also in sourсe #XX -- [ Pg.340 , Pg.341 ]




SEARCH



Purine PRPP synthetase

Purines adenylosuccinate synthetase

© 2024 chempedia.info