Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pseudo substrate processed

The reaction kinetics studied using UV spectroscopy is formally identical to that of acid-catalyzed hydrolysis of l-alkoxybut-l-en-3-ynes (a first-order reaction with respect to the substrate and acid) (75IZV1975 78IZV153). At a constant acid concentration the reaction proceeds as a pseudo-monomolecular process. [Pg.196]

The slow protonation rate of the conjugated anion of the sulphone (1st step) leads to the obtainment of a pseudo one-electron process. However, no self-protonatiori process exists in the presence of an excess of a proton donor of lower pKa than that of the electroactive substrate and Figure 6a, curve 2 shows evidence for a two-electron step. Full substitution on the a carbon, as in the case of phenyl 2-phenylbut-2-yl sulphone, does not allow one to observe any deactivation (Figure 6b, curve 1). It is worth mentioning that cathodic deactivations of acidic substrates in aprotic solvents are rather general in electrochemistry, e.g. aromatic ketones behave rather similarly, showing deprotonation of the substrate by the dianion of the carbonyl compound39. [Pg.1028]

The usual kinetic law for S/v Ar reactions is the second-order kinetic law, as required for a bimolecular process. This is generally the case where anionic or neutral nucleophiles react in usual polar solvents (methanol, DMSO, formamide and so on). When nucleophilic aromatic substitutions between nitrohalogenobenzenes (mainly 2,4-dinitrohalogenobenzenes) and neutral nucleophiles (amines) are carried out in poorly polar solvents (benzene, hexane, carbon tetrachloride etc.) anomalous kinetic behaviour may be observed263. Under pseudo-monomolecular experimental conditions (in the presence of large excess of nucleophile with respect to the substrate) each run follows a first-order kinetic law, but the rate constants (kQbs in s 1 ruol 1 dm3) were not independent of the initial concentration value of the used amine. In apolar solvents the most usual kinetic feature is the increase of the kabs value on increasing the [amine]o values [amine]o indicates the initial concentration value of the amine. [Pg.465]

Reactions in which the velocity (v) of the process is independent of the reactant concentration, following the rate law v = k. Thus, the rate constant k has units of M sAn example of a zero-order reaction is a Michaelis-Menten enzyme-catalyzed reaction in which the substrate concentration is much larger than the Michaelis constant. Under these conditions, if the substrate concentration is raised even further, no change in the velocity will be observed (since v = Umax)- Thus, the reaction is zero-order with respect to the substrate. However, the reaction is still first-order with respect to total enzyme concentration. When the substrate concentration is not saturating then the reaction ceases to be zero order with respect to substrate. Reactions that are zero-order in each reactant are exceedingly rare. Thus, zero-order reactions address a fundamental difference between order and molecularity. Reaction order is an empirical relationship. Hence, the term pseudo-zero order is actually redundant. All zero-order reactions cease being so when no single reactant is in excess concentration with respect to other reactants in the system. [Pg.713]

In a different approach, fluorescence-based DNA microarrays are utilized (88). In a model study, chiral amino acids were used. Mixtures of a racemic amino acid are first subjected to acylation at the amino function with formation of A-Boc protected derivatives. The samples are then covalently attached to amine-functionalized glass slides in a spatially arrayed manner (Fig. 10). In a second step, the uncoupled surface amino functions are acylated exhaustively. The third step involves complete deprotection to afford the free amino function of the amino acid. Finally, in a fourth step, two pseudo-Qn nX. om.Qx c fluorescent probes are attached to the free amino groups on the surface of the array. An appreciable degree of kinetic resolution in the process of amide coupling is a requirement for the success of the ee assay (Horeau s principle). In the present case, the ee values are accessible by measuring the ratio of the relevant fluorescent intensities. About 8000 ee determinations are possible per day, precision amounting to +10% of the actual value ((S(S). Although it was not explicitly demonstrated that this ee assay can be used to evaluate enzymes (e.g., proteases), this should in fact be possible. So far this approach has not been extended to other types of substrates. [Pg.19]

Reetz and coworkers developed a highly efficient method for screening of enantioselectivity of asymmetrically catalyzed reactions of chiral or prochiral substrates using ESI-MS [60]. This method is based on the use of isotopically labeled substrates in the form of pseudo-enantiomers or pseudo-prochiral compounds. Pseudo-enantiomers are chiral compounds which are characterized by different absolute configurations and one of them is isotopically labeled. With these labeled compounds two different stereochemical processes are possible. The first is a kinetic separation of a racemic mixture, the second the asymmetric conversion of prochiral substrates with enantiotopic groups. The conversion can be monitored by measuring the relative amounts of substrates or products by electrospray mass spectrometry. Since only small amounts of sample are required for this method, reactions are easily carried out in microtiter plates. The combination of MS and the use of pseudo-enantiomers can be used for the investigation of different kinds of asymmetric conversion as shown in Fig. 3 [60]. [Pg.14]

Numerous experimental combinations of process conditions (SS or US), hydrogenation gas (H2 or D2), and solvent (H2O or D2O) have been explored. A summary of combinations we have chosen for study is presented in Table 2. In this table it is seen that the experiments are labeled B1-B7 for 3B20L and P1-P6 for 14PD30L. The second column lists the experimental conditions, whereas the third column lists the initial system concentration based on 100 mM of substrate and the amount of catalyst used. The penultimate column lists the final (extent of reaction > 95%) selectivity to ketone (2-butanone or 3-pentanone) and the final column lists the pseudo-first order substrate loss rate coefficient. The dataset contained in Table 2 enables numerous conclusions to be made regarding the reaction systems. The differences in initial concentrations (e.g., 67 versus 100 M/g-cat.) arise from the chosen convenience of having similar activities and therefore comparable reaction times. [Pg.219]

The synthesis of organozinc compounds by electrochemical processes from either low reactive halogenated substrates (alkyl chlorides) or pseudo-halogenated substrates (phenol derivatives, mesylates, triflates etc.) remains an important challenge. Indeed, as mentioned above, the use of electrolytic zinc prepared from the reduction of a metal halide or from zinc(II) ions does not appear to be a convenient method. However, recent work reported by Tokuda and coworkers would suggest that the electroreduction of a zinc(II) species in the presence of naphthalene leads to the formation of a very active zinc capable of reacting even with low reactive substrates (equation 23)11. [Pg.769]

In the subsequent, thermodynamically controlled process the more stable adduct At becomes predominant through a reequilibration via the starting substrate. The observed pseudo first-order rate constant is given by Eq. (10).46... [Pg.326]

Such a reaction is described as first order and the proportionality constant k is known as the rate constant. Such first-order kinetics is observed for unimolecular processes in which a molecule of A is converted into product P in a given time interval with a probability that does not depend on interaction with another molecule. An example is radioactive decay. Enzyme-substrate complexes often react by unimolecular processes. In other cases, a reaction is pseudo-first order compound A actually reacts with a second molecule such as water, which is present in such excess that its concentration does not change during the experiment. Consequently, the velocity is apparently proportional only to [A]. [Pg.457]

If M is unstable then ipb/fpf will be less than unity. Its magnitude will depend upon the scan rate, the value of the first-order constant k, and the conditions of the experiment. At fast scan rates the ratio ipb/ ip, may approach one if the time gate for the decomposition of M is small compared with the half-life of M-, (In 2jk). As the temperature is lowered, the magnitude of k may be sufficiently decreased for full reversible behaviour to be observed. The decomposition of M- could involve the attack of a solution species upon it, e.g. an electrophile. In such cases, ipb/ipf, will of course be dependent upon the concentration of the particular substrate (under pseudo-first-order conditions, k is kapparent). Quantitative cyclic voltammetric and related techniques allow the evaluation of the rate constants for such electrochemical—chemical, EC, processes. At the limit, the electron-transfer process is completely irreversible if k is sufficiently large with respect to the rate of heterogeneous electron transfer the electrochemical and chemical steps are concerted on the time-scale of the cyclic voltammetric experiment.1-3... [Pg.499]

A considerable amount of experimentation has been done on the kinetics of acid hydrolysis of pure cellulose substrates. Little experimentation has been done on natural cellulosic materials. Typical examples of kinetic studies of acid hydrolysis of cellulose can be found in the papers of Saeman (33) and Grethlein (13). These researchers depict the acid hydrolysis process as a pseudo-first-order sequential process, with the rate constants as a function of the acid concentration raised to a power, i.e.,... [Pg.35]

Several options were possible for modeling Equation (6.131) and Equation (6.132), and the choice of an appropriate model depended on the relationship between the rate constants and the degree of accuracy desired. When the substrate was not strongly associated with the solid phase or when the reaction rate was much lower than the desorption rate, it was possible to model the transformation as a pseudo first-order process, based on the assumption that Reaction 6.131 was insignificant relative to the reaction shown in Equation (6.132) (i.e., [PCB] = PCB(0(). The transformation rate was then approximated by Equation (6.133). [Pg.225]

A parallel study of aqueous bromination of pyrimidin-4(3//)-one and its /V-methyl derivatives also pointed to an addition-elimination process involving cationic intermediates. The kinetic results for these substrates differed from those of 39 (in which the pseudo bases dehydrate as neutral molecules) in that the intermediates dehydrated in cationic forms (79JOC3256). Again, the covalent hydrates, though present to only a minor extent (—0.0003%), were the reactive species in the bromination process. Pyrimidin-4(3//)-one, as its covalent hydrate, reacts 600 times faster than it does itself the rate enhancement is even greater O 104) for the 2-isomer, which exhibits a higher degree (—0.05%) of covalent hydration. [Pg.307]

Kinetic resolution of chiral, racemic anhydrides In this process the racemic mixture of a chiral anhydride is exposed to the alcohol nucleophile in the presence of a chiral catalyst such as A (Scheme 13.2, middle). Under these conditions, one substrate enantiomer is converted to a mono-ester whereas the other remains unchanged. Application of catalyst B (usually the enantiomer or a pseudo-enantiomer of A) results in transformation/non-transformation of the enantiomeric starting anhydride ). As usual for kinetic resolution, substrate conversion/product yield(s) are intrinsically limited to a maximum of 50%. For normal anhydrides (X = CR2), both carbonyl groups can engage in ester formation, and the product formulas in Scheme 13.1 are drawn arbitrarily. This section also covers the catalytic asymmetric alcoholysis of a-hydroxy acid O-carboxy anhydrides (X = O) and of a-amino acid N-carboxy anhydrides (X = NR). In these reactions the electrophilicity of the carbonyl groups flanking X is reduced and regioselective attack of the alcohol nucleophile on the other carbonyl function results. [Pg.347]


See other pages where Pseudo substrate processed is mentioned: [Pg.575]    [Pg.827]    [Pg.114]    [Pg.827]    [Pg.3]    [Pg.392]    [Pg.171]    [Pg.152]    [Pg.147]    [Pg.223]    [Pg.229]    [Pg.255]    [Pg.532]    [Pg.220]    [Pg.126]    [Pg.957]    [Pg.418]    [Pg.158]    [Pg.268]    [Pg.279]    [Pg.212]    [Pg.328]    [Pg.277]    [Pg.185]    [Pg.53]    [Pg.219]    [Pg.200]    [Pg.516]    [Pg.134]    [Pg.269]    [Pg.268]    [Pg.279]    [Pg.336]    [Pg.685]    [Pg.255]   
See also in sourсe #XX -- [ Pg.209 ]




SEARCH



Pseudo-substrates

© 2024 chempedia.info