Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protein adjacent

Proteins adjacent to peroxidizing phospholipids may undergo modification by the interaction of the free amino groups of the side-chains of the substituent lysine residues with a range of aldehydic metabolites of lipid hydroperoxide breakdown. [Pg.225]

If the protein is comprised of n amino acids, then the vector w of weights is w-dimensional. The protein adjacency matrix has off-diagonal elements equal to 1 if there is a covalent bond between two a-carbon atoms and zero otherwise the diagonal elements are equal to 1 if the amino acid has a hydrogen-bond interaction between its side-chain and the main chain atom. [Pg.807]

The caspases are a family of intracellular proteases responsible for the disassembly of the cell into apoptotic bodies. They are a popular target for immunohistochemical evaluation of apoptosis since these proteins are major components of the apoptotic cascade. Caspases are typically present in normal cells as inactive pro-enzymes that are activated in apoptotic cells by proteolytic cleavage into the active form. Active caspases contain a cysteine at their catalytic site and cleave target proteins adjacent to aspartate residues,... [Pg.63]

Figure C3.1.10. (a) Steady state IR difference spectmm (dark minus light) of cytoclirome c oxidase CO complex measured at low temperature (127 K). This protein contains a copper atom situated immediately adjacent to a haem... Figure C3.1.10. (a) Steady state IR difference spectmm (dark minus light) of cytoclirome c oxidase CO complex measured at low temperature (127 K). This protein contains a copper atom situated immediately adjacent to a haem...
Proteins are biopolymers formed by one or more continuous chains of covalently linked amino acids. Hydrogen bonds between non-adjacent amino acids stabilize the so-called elements of secondary structure, a-helices and / —sheets. A number of secondary structure elements then assemble to form a compact unit with a specific fold, a so-called domain. Experience has shown that a number of folds seem to be preferred, maybe because they are especially suited to perform biological protein function. A complete protein may consist of one or more domains. [Pg.66]

By using an effective, distance-dependent dielectric constant, the ability of bulk water to reduce electrostatic interactions can be mimicked without the presence of explicit solvent molecules. One disadvantage of aU vacuum simulations, corrected for shielding effects or not, is the fact that they cannot account for the ability of water molecules to form hydrogen bonds with charged and polar surface residues of a protein. As a result, adjacent polar side chains interact with each other and not with the solvent, thus introducing additional errors. [Pg.364]

Section 27 19 Two secondary structures of proteins are particularly prominent The pleated sheet is stabilized by hydrogen bonds between N—H and C=0 groups of adjacent chains The a helix is stabilized by hydrogen bonds within a single polypeptide chain... [Pg.1152]

Fig. 2. Protein secondary stmcture (a) the right-handed a-helix, stabilized by intrasegmental hydrogen-bonding between the backbone CO of residue i and the NH of residue t + 4 along the polypeptide chain. Each turn of the helix requires 3.6 residues. Translation along the hehcal axis is 0.15 nm per residue, or 0.54 nm per turn and (b) the -pleated sheet where the polypeptide is in an extended conformation and backbone hydrogen-bonding occurs between residues on adjacent strands. Here, the backbone CO and NH atoms are in the plane of the page and the amino acid side chains extend from C ... Fig. 2. Protein secondary stmcture (a) the right-handed a-helix, stabilized by intrasegmental hydrogen-bonding between the backbone CO of residue i and the NH of residue t + 4 along the polypeptide chain. Each turn of the helix requires 3.6 residues. Translation along the hehcal axis is 0.15 nm per residue, or 0.54 nm per turn and (b) the -pleated sheet where the polypeptide is in an extended conformation and backbone hydrogen-bonding occurs between residues on adjacent strands. Here, the backbone CO and NH atoms are in the plane of the page and the amino acid side chains extend from C ...
Two cysteine residues in different parts of the polypeptide chain but adjacent in the three-dimensional structure of a protein can be oxidized to form a disulfide bridge (Figure 1.4). The disulfide is usually the end product of air oxidation according to the following reaction scheme ... [Pg.5]

The secondary structure elements, formed in this way and held together by the hydrophobic core, provide a rigid and stable framework. They exhibit relatively little flexibility with respect to each other, and they are the best-defined parts of protein structures determined by both x-ray and NMR techniques. Functional groups of the protein are attached to this framework, either directly by their side chains or, more frequently, in loop regions that connect sequentially adjacent secondary structure elements. We will now have a closer look at these structural elements. [Pg.14]

Figure 2.8 Adjacent antiparallel P strands are joined by hairpin loops. Such loops are frequently short and do not have regular secondary structure. Nevertheless, many loop regions in different proteins have similar structures, (a) Histogram showing the frequency of hairpin loops of different lengths in 62 different proteins, (b) The two most frequently occurring two-residue hairpin loops Type I turn to the left and Type II turn to the right. Bonds within the hairpin loop are green, [(a) Adapted from B.L. Sibanda and J.M. Thornton, Nature 316 170-174, 1985.]... Figure 2.8 Adjacent antiparallel P strands are joined by hairpin loops. Such loops are frequently short and do not have regular secondary structure. Nevertheless, many loop regions in different proteins have similar structures, (a) Histogram showing the frequency of hairpin loops of different lengths in 62 different proteins, (b) The two most frequently occurring two-residue hairpin loops Type I turn to the left and Type II turn to the right. Bonds within the hairpin loop are green, [(a) Adapted from B.L. Sibanda and J.M. Thornton, Nature 316 170-174, 1985.]...
Figure 2.11 Beta sheets are usuaiiy represented simply by arrows in topology diagrams that show both the direction of each (3 strand and the way the strands are connected to each other along the polypeptide chain. Such topology diagrams are here compared with more elaborate schematic diagrams for different types of (3 sheets, (a) Four strands. Antiparallel (3 sheet in one domain of the enzyme aspartate transcarbamoylase. The structure of this enzyme has been determined to 2.8 A resolution in the laboratory of William Lipscomb, Harvard University, (b) Five strands. Parallel (3 sheet in the redox protein flavodoxin, the structure of which has been determined to 1.8 A resolution in the laboratory of Martha Ludwig, University of Michigan, (c) Eight strands. Antiparallel barrel in the electron carrier plastocyanln. This Is a closed barrel where the sheet is folded such that (3 strands 2 and 8 are adjacent. The structure has been determined to 1.6 A resolution in the laboratory of Hans Freeman in Sydney, Australia. (Adapted from J. Richardson.)... Figure 2.11 Beta sheets are usuaiiy represented simply by arrows in topology diagrams that show both the direction of each (3 strand and the way the strands are connected to each other along the polypeptide chain. Such topology diagrams are here compared with more elaborate schematic diagrams for different types of (3 sheets, (a) Four strands. Antiparallel (3 sheet in one domain of the enzyme aspartate transcarbamoylase. The structure of this enzyme has been determined to 2.8 A resolution in the laboratory of William Lipscomb, Harvard University, (b) Five strands. Parallel (3 sheet in the redox protein flavodoxin, the structure of which has been determined to 1.8 A resolution in the laboratory of Martha Ludwig, University of Michigan, (c) Eight strands. Antiparallel barrel in the electron carrier plastocyanln. This Is a closed barrel where the sheet is folded such that (3 strands 2 and 8 are adjacent. The structure has been determined to 1.6 A resolution in the laboratory of Hans Freeman in Sydney, Australia. (Adapted from J. Richardson.)...
Figure 2.17 Two adjacent parallel p strands are usually connected by an a helix from the C-termlnus of strand 1 to the N-termlnus of strand 2. Most protein structures that contain parallel p sheets are built up from combinations of such p-a-P motifs. Beta strands are red, and a helices are yellow. Arrows represent P strands, and cylinders represent helices, (a) Schematic diagram of the path of the main chain, (b) Topological diagrams of the P-a-P motif. Figure 2.17 Two adjacent parallel p strands are usually connected by an a helix from the C-termlnus of strand 1 to the N-termlnus of strand 2. Most protein structures that contain parallel p sheets are built up from combinations of such p-a-P motifs. Beta strands are red, and a helices are yellow. Arrows represent P strands, and cylinders represent helices, (a) Schematic diagram of the path of the main chain, (b) Topological diagrams of the P-a-P motif.
Domains are formed by different combinations of secondary structure elements and motifs. The a helices and p strands of the motifs are adjacent to each other in the three-dimensional structure and connected by loop regions. Sequentially adjacent motifs, or motifs that are formed from consecutive regions of the primary structure of a polypeptide chain, are usually close together in the three-dimensional structure (Figure 2.20). Thus to a first approximation a polypeptide chain can be considered as a sequential arrangement of these simple motifs. The number of such combinations found in proteins is limited, and some combinations seem to be structurally favored. Thus similar domain structures frequently occur in different proteins with different functions and with completely different amino acid sequences. [Pg.30]

Figure 3.6 Four-helix bundles frequently occur as domains in a proteins. The arrangement of the a helices is such that adjacent helices in the amino acid sequence are also adjacent in the three-dimensional structure. Some side chains from all four helices are buried in the middle of the bundle, where they form a hydrophobic core, (a) Schematic representation of the path of the polypeptide chain in a four-helrx-bundle domain. Red cylinders are a helices, (b) Schematic view of a projection down the bundle axis. Large circles represent the main chain of the a helices small circles are side chains. Green circles are the buried hydrophobic side chains red circles are side chains that are exposed on the surface of the bundle, which are mainly hydrophilic. Figure 3.6 Four-helix bundles frequently occur as domains in a proteins. The arrangement of the a helices is such that adjacent helices in the amino acid sequence are also adjacent in the three-dimensional structure. Some side chains from all four helices are buried in the middle of the bundle, where they form a hydrophobic core, (a) Schematic representation of the path of the polypeptide chain in a four-helrx-bundle domain. Red cylinders are a helices, (b) Schematic view of a projection down the bundle axis. Large circles represent the main chain of the a helices small circles are side chains. Green circles are the buried hydrophobic side chains red circles are side chains that are exposed on the surface of the bundle, which are mainly hydrophilic.
In this structure the loop regions adjacent to the switch point do not provide a binding crevice for the substrate but instead accommodate the active-site zinc atom. The essential point here is that this zinc atom and the active site are in the predicted position outside the switch point for the four central parallel p strands, even though these p strands are only a small part of the total structure. This sort of arrangement, in which an active site formed from parallel p strands is flanked by antiparallel p strands, has been found in a number of other a/p proteins with mixed p sheets. [Pg.62]


See other pages where Protein adjacent is mentioned: [Pg.112]    [Pg.18]    [Pg.288]    [Pg.489]    [Pg.112]    [Pg.18]    [Pg.288]    [Pg.489]    [Pg.332]    [Pg.45]    [Pg.53]    [Pg.525]    [Pg.535]    [Pg.1144]    [Pg.1180]    [Pg.1291]    [Pg.41]    [Pg.32]    [Pg.539]    [Pg.185]    [Pg.99]    [Pg.286]    [Pg.2063]    [Pg.565]    [Pg.209]    [Pg.378]    [Pg.388]    [Pg.458]    [Pg.19]    [Pg.21]    [Pg.27]    [Pg.32]    [Pg.37]    [Pg.41]    [Pg.56]    [Pg.63]    [Pg.63]    [Pg.64]    [Pg.84]   
See also in sourсe #XX -- [ Pg.98 ]




SEARCH



Adjacency

Adjacent

© 2024 chempedia.info