Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

0- propionaldehyde, ethylene acetal

UNSATURATED ALCOHOLS Diisobutylaluminum hydride. aj3-UNSATURATED ALDEHYDES S-Alkyl N,N-dimethylaminodithiocarbamate. Bis-(dimethylaluminum)l,3-propandedithiolate. p-(Phenylsulfonyl)propionaldehyde ethylene acetal. Sodium N,N-dimethyldithiocarbamate. Tetraethylthiuram disulfide. (3,7-UNSATURATED ALDEHYDES 2-MethoxycycIopropyllithium. [Pg.733]

With the exception of acetic, acryUc, and benzoic all other acids in Table 1 are primarily produced using oxo chemistry (see Oxo process). Propionic acid is made by the Hquid-phase oxidation of propionaldehyde, which in turn is made by appHcation of the oxo synthesis to ethylene. Propionic acid can also be made by oxidation of propane or by hydrocarboxylation of ethylene with CO and presence of a rhodium (2) or iridium (3) catalyst. [Pg.94]

ETHYLENE GLYCOL ETHYL MERCAPTAN DIMETHYL SULPHIDE ETHYL AMINE DIMETHYL AMIDE MONOETHANOLAMINE ETHYLENEDIAMINE ACRYLONITRILE PROPADIENE METHYL ACETYLENE ACROLEIN ACRYLIC ACID VINYL FORMATE ALLYL CHLORIDE 1 2 3-TRICHLOROPROPANE PROPIONITRILE CYCLOPROPANE PROPYLENE 1 2-DICHLOROPROPANE ACETONE ALLYL ALCOHOL PROPIONALDEHYDE PROPYLENE OXIDE VINYL METHYL ETHER PROPIONIC ACID ETHYL FORMATE METHYL ACETATE PROPYL CHLORIDE ISOPROPYL CHLORIDE PROPANE... [Pg.942]

Figure 5.6 Alcohols, aldehydes, ketones and acids 15, ethylene glycol 16, vinyl alcohol 17, acetaldehyde 18, formaldehyde 19, glyoxal 20, propionaldehyde 21, propionaldehyde 22, acetone 23, ketene 24, formic acid 25, acetic acid 26, methyl formate. (Reproduced from Guillemin et at. 2004 by permission of Elsevier)... Figure 5.6 Alcohols, aldehydes, ketones and acids 15, ethylene glycol 16, vinyl alcohol 17, acetaldehyde 18, formaldehyde 19, glyoxal 20, propionaldehyde 21, propionaldehyde 22, acetone 23, ketene 24, formic acid 25, acetic acid 26, methyl formate. (Reproduced from Guillemin et at. 2004 by permission of Elsevier)...
A mixture of 288 g (4 mols) of isobutyraldehyde, 288 g of methanol was cooled to 10°C and 170 g (2 mols) of 36.6% formalin containing 8.5 g (3% based on isobutyraldehyde) of sodium hydroxide was added dropwise over a 55 minute period to produce alpha,alpha-dimethyl-beta-hydroxy-propionaldehyde. The mixture was stirred for an additional 2 hours at 10-15°C and then contacted with acetic acid to neutralize the catalyst. The excess isobutyraldehyde and methanol were stripped off at a kettle temperature of 50°C at 25 mm. To the residual a,a-dimethyl-beta-hydroxypropionaldehyde a mixture of 260 ml of methanol and 2 g (0.75%) sodium cyanide was added and the solution cooled to 10°C before adding 59.4 g (2.2 mols) of hydrogen cyanide dropwise over a 35 minute period to produce a,y-dihydroxy-p,p-dimethylbutyronitrile. The mixture was stirred at 10°C for one hour period and then contacted with acetic acid to neutralize the catalyst before stripping off the excess methanol to a kettle temperature of 45°C at 18 mm. The crude cyanohydrin was then hydrolysed by heating with 4 mols of concentrated hydrochloric acid at 80°C for 2 hours, then diluting with an equal volume of water and heating at 100°C for an additional 8 hours. The aqueous mixture was extracted continuously with ethylene dichloride. The solvent was... [Pg.794]

A powerful oxidizer. Explosive reaction with acetaldehyde, acetic acid + heat, acetic anhydride + heat, benzaldehyde, benzene, benzylthylaniUne, butyraldehyde, 1,3-dimethylhexahydropyrimidone, diethyl ether, ethylacetate, isopropylacetate, methyl dioxane, pelargonic acid, pentyl acetate, phosphoms + heat, propionaldehyde, and other organic materials or solvents. Forms a friction- and heat-sensitive explosive mixture with potassium hexacyanoferrate. Ignites on contact with alcohols, acetic anhydride + tetrahydronaphthalene, acetone, butanol, chromium(II) sulfide, cyclohexanol, dimethyl formamide, ethanol, ethylene glycol, methanol, 2-propanol, pyridine. Violent reaction with acetic anhydride + 3-methylphenol (above 75°C), acetylene, bromine pentafluoride, glycerol, hexamethylphosphoramide, peroxyformic acid, selenium, sodium amide. Incandescent reaction with alkali metals (e.g., sodium, potassium), ammonia, arsenic, butyric acid (above 100°C), chlorine trifluoride, hydrogen sulfide + heat, sodium + heat, and sulfur. Incompatible with N,N-dimethylformamide. [Pg.365]

Iodine Potassium Iodide Dodecylbenzene Tridecyibenzene Hydroquinone Propionaldehyde Methylform amide Diacetone Alcohol Isoamyl Alcohol Pentanedione (2,4-) Acetylacetone Paraldehyde Butylaldehyde Butyraldehyde Levulinic Acid Dioctyl Adipate Acetic Acid Butyl Ester Butyl Acetate Dioxane (1,4-) Dioxane Dioxane (p-) Isoamyl Acetate Thiodiacetic Acid Butyl Stearate Santoprene 201-73 Kamax T-260 Adipic Acid Ethylene Chloroformate Caprylic Acid Octanoic Acid Hexamethylenediamine Butyl Carbitol Acetate Decane Carbon Dioxide Dimethylamine Sodium Methylate Freon 114B2 Tetrachloropentane Santicizer 141 Santoprene 201-64 Ecolan Hetron 99P Calcium Hydride Triton Sulfolane Tributyl Phosphate Tributylphosphate Sodium Diacetate Methacrylonitrile... [Pg.1085]

Propionic acid is produced commercially by several different processes. It is a by-product of the liquid phase oxidation of hydrocarbons for the manufacture of acetic acid. It is also made from carbon monoxide and ethylene by the 0x0 process through a propionaldehyde intermediate or by the carbonylation of ethylene with a nickel-based catalyst. BASF uses the one-step Reppe carbonylation process with a nickel propionate catalyst to produce 40,000 metric tons per year of propionic acid in Ludwigshafen, Germany. The hydrocarboxylation chemistry is shown in Eq. (29) ... [Pg.244]

Methyl Methcrylate from Propionaldehyde. Propionaldehyde is produced by the oxo reaction of syngas with ethylene. Reaction of propionaldehyde with formaldehyde and dimethylamine in acetic acid form a Man-nich base salt that can be thermally cracked to methacrolein. Methacrolein can be oxidized to methacrylic acid which is then converted to methyl methacrylate by esterification with methanol. The chemistry is illustrated in Eqs. (31)-(34) ... [Pg.246]

Many acrylic copolymers are currently used in the textile industry as binders for nonwoven fabrics. The purpose of these fibers is to stabilize the material. In many instances, these copolymers are used in conjunction with amino resins. Casanovas and Rovira have done a study of methyl methacrylate-ethyl acrylate-N-methylol-acrylamide by PY/GC-MS. Among the products identified were methane, ethylene, propene, isobutene, methanol, propionaldehyde, ethanol, ethyl acetate, methyl acrylate, methyl isobutyrate, ethyl acrylate, methyl methacrylate, n-propyl acrylate, and ethyl methacrylate. In this sample, clearly monomer reversion is the primary degradation process occurring however, several other degradation mechanisms are at work. When the sample contains an amino resin in the mixture, acrylonitrile is observed in the pyrogram. Another effect of the amino presence was a marked increase in the amount of methanol detected. Other products detected were meth-oxyhydrazine, methyl isocyanate, and methyl isocyanide. [Pg.239]


See other pages where 0- propionaldehyde, ethylene acetal is mentioned: [Pg.461]    [Pg.462]    [Pg.789]    [Pg.791]    [Pg.234]    [Pg.618]    [Pg.732]    [Pg.329]    [Pg.69]    [Pg.165]    [Pg.108]    [Pg.313]   
See also in sourсe #XX -- [ Pg.461 ]




SEARCH



0- propionaldehyde, ethylene

3- propionaldehyd

Ethylene acetals

Propionaldehyde

© 2024 chempedia.info