Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

0- propionaldehyde, ethylene

Phenylsulfmylcyclohexanone, 236 Phenylsulfinylcyclopropanes, 457 Phenylsulfinyldiazoniethane, 457 2-Phenylsulfonyl ketones, 3 /3-(Plienylsulfonyl)propionaldehyde, ethylene... [Pg.380]

UNSATURATED ALCOHOLS Diisobutylaluminum hydride. aj3-UNSATURATED ALDEHYDES S-Alkyl N,N-dimethylaminodithiocarbamate. Bis-(dimethylaluminum)l,3-propandedithiolate. p-(Phenylsulfonyl)propionaldehyde ethylene acetal. Sodium N,N-dimethyldithiocarbamate. Tetraethylthiuram disulfide. (3,7-UNSATURATED ALDEHYDES 2-MethoxycycIopropyllithium. [Pg.733]

Hydroformylation of an olefin usiag synthesis gas, the 0x0 process (qv), was first commercialized ia Germany ia 1938 to produce propionaldehyde from ethylene and butyraldehydes from propylene (12). [Pg.472]

The mechanism of the cobalt-cataly2ed oxo reaction has been studied extensively. The formation of a new C—C bond by the hydroformylation reaction proceeds through an organometaUic intermediate formed from cobalt hydrocarbonyl which is regenerated in the aldehyde-forrning stage. The mechanism (5,6) for the formation of propionaldehyde [123-38-6] from ethylene is illustrated in Figure 1. [Pg.466]

Fig. 1. Mechanism for the unmodified cobalt oxo reaction which produces propionaldehyde from ethylene. Fig. 1. Mechanism for the unmodified cobalt oxo reaction which produces propionaldehyde from ethylene.
Propanol has been manufactured by hydroformylation of ethylene (qv) (see Oxo process) followed by hydrogenation of propionaldehyde or propanal and as a by-product of vapor-phase oxidation of propane (see Hydrocarbon oxidation). Celanese operated the only commercial vapor-phase oxidation faciUty at Bishop, Texas. Since this faciUty was shut down ia 1973 (5,6), hydroformylation or 0x0 technology has been the principal process for commercial manufacture of 1-propanol ia the United States and Europe. Sasol ia South Africa makes 1-propanol by Fischer-Tropsch chemistry (7). Some attempts have been made to hydrate propylene ia an anti-Markovnikoff fashion to produce 1-propanol (8—10). However, these attempts have not been commercially successful. [Pg.117]

With Unsaturated Compounds. The reaction of unsaturated organic compounds with carbon monoxide and molecules containing an active hydrogen atom leads to a variety of interesting organic products. The hydroformylation reaction is the most important member of this class of reactions. When the hydroformylation reaction of ethylene takes place in an aqueous medium, diethyl ketone [96-22-0] is obtained as the principal product instead of propionaldehyde [123-38-6] (59). Ethylene, carbon monoxide, and water also yield propionic acid [79-09-4] under mild conditions (448—468 K and 3—7 MPa or 30—70 atm) using cobalt or rhodium catalysts containing bromide or iodide (60,61). [Pg.52]

With the exception of acetic, acryUc, and benzoic all other acids in Table 1 are primarily produced using oxo chemistry (see Oxo process). Propionic acid is made by the Hquid-phase oxidation of propionaldehyde, which in turn is made by appHcation of the oxo synthesis to ethylene. Propionic acid can also be made by oxidation of propane or by hydrocarboxylation of ethylene with CO and presence of a rhodium (2) or iridium (3) catalyst. [Pg.94]

Addition. Addition reactions of ethylene have considerable importance and lead to the production of ethylene dichloride, ethylene dibromide, and ethyl chloride by halogenation—hydrohalogenation ethylbenzene, ethyltoluene, and aluminum alkyls by alkylation a-olefms by oligomerization ethanol by hydration and propionaldehyde by hydroformylation. [Pg.433]

ETHYLENE GLYCOL ETHYL MERCAPTAN DIMETHYL SULPHIDE ETHYL AMINE DIMETHYL AMIDE MONOETHANOLAMINE ETHYLENEDIAMINE ACRYLONITRILE PROPADIENE METHYL ACETYLENE ACROLEIN ACRYLIC ACID VINYL FORMATE ALLYL CHLORIDE 1 2 3-TRICHLOROPROPANE PROPIONITRILE CYCLOPROPANE PROPYLENE 1 2-DICHLOROPROPANE ACETONE ALLYL ALCOHOL PROPIONALDEHYDE PROPYLENE OXIDE VINYL METHYL ETHER PROPIONIC ACID ETHYL FORMATE METHYL ACETATE PROPYL CHLORIDE ISOPROPYL CHLORIDE PROPANE... [Pg.942]

Figure 5.6 Alcohols, aldehydes, ketones and acids 15, ethylene glycol 16, vinyl alcohol 17, acetaldehyde 18, formaldehyde 19, glyoxal 20, propionaldehyde 21, propionaldehyde 22, acetone 23, ketene 24, formic acid 25, acetic acid 26, methyl formate. (Reproduced from Guillemin et at. 2004 by permission of Elsevier)... Figure 5.6 Alcohols, aldehydes, ketones and acids 15, ethylene glycol 16, vinyl alcohol 17, acetaldehyde 18, formaldehyde 19, glyoxal 20, propionaldehyde 21, propionaldehyde 22, acetone 23, ketene 24, formic acid 25, acetic acid 26, methyl formate. (Reproduced from Guillemin et at. 2004 by permission of Elsevier)...
BASF led the development of a route based on ethylene and synthesis gas. Its four step process begins with the production of propionaldehyde from ethylene, CO, and H2 using a proprietary catalyst mixture that they aren t telling anything about. Reaction with formaldehyde gives methacrolein. The last two steps are the same as above—oxidation with air yields the MAA subsequent reaction with methanol yields MMA. [Pg.289]

The addition of ethylene to a CO-H flow on a Rh-CeO catalyst (fig. 4), which should enhance the surface concentration of C H groups increased the formation of propanol and propionaldehyde and decreased the ethanol and acetaldehyde production. [Pg.245]

In similar electrochlorination experiments, propionaldehyde [86], ethylene [87], tetramethylpiperidine derivatives [88], amines [89], acetone [90], and polymers [91] have been converted into chloro derivatives. Mechanistic studies have aimed at elucidating the role of chloronium intermediates [92], water [93], and of redox mediators such as Ce +[94] in the electrochlorination process. [Pg.284]

Abeles and associates showed that when dioldehydratase (Table 16-1) catalyzes the conversion of l,2-[l-3H]propanediol to propionaldehyde, tritium appears in the coenzyme as well as in the final product. When 3H-containing coenzyme is incubated with unlabeled propanediol, the product also contains 3H, which was shown by chemical degradation to be exclusively on C-5 . Synthetic 5 -deoxyadenosyl coenzyme containing 3H in the 5 position transferred 3H to product. Most important, using a mixture of propanediol and ethylene glycol, a small amount of inter-molecular transfer was demonstrated that is, 3H was transferred into acetaldehyde, the product of dehydration of ethylene glycol. Similar results were also obtained with ethanolamine ammonia-lyase 399... [Pg.872]

Propionic acid (CH3CH2COOH) is produced using mainly the oxo process (about 200,000 Mg), which involves reacting ethylene and carbon monoxide to produce propionaldehyde, to be further oxidized in the presence of cobalt or manganese ions at 40-50°C (Anon., 2002). About 45% of the overall consumption of propionic acid is used as such or as ammonium propionate... [Pg.337]

A mixture of 288 g (4 mols) of isobutyraldehyde, 288 g of methanol was cooled to 10°C and 170 g (2 mols) of 36.6% formalin containing 8.5 g (3% based on isobutyraldehyde) of sodium hydroxide was added dropwise over a 55 minute period to produce alpha,alpha-dimethyl-beta-hydroxy-propionaldehyde. The mixture was stirred for an additional 2 hours at 10-15°C and then contacted with acetic acid to neutralize the catalyst. The excess isobutyraldehyde and methanol were stripped off at a kettle temperature of 50°C at 25 mm. To the residual a,a-dimethyl-beta-hydroxypropionaldehyde a mixture of 260 ml of methanol and 2 g (0.75%) sodium cyanide was added and the solution cooled to 10°C before adding 59.4 g (2.2 mols) of hydrogen cyanide dropwise over a 35 minute period to produce a,y-dihydroxy-p,p-dimethylbutyronitrile. The mixture was stirred at 10°C for one hour period and then contacted with acetic acid to neutralize the catalyst before stripping off the excess methanol to a kettle temperature of 45°C at 18 mm. The crude cyanohydrin was then hydrolysed by heating with 4 mols of concentrated hydrochloric acid at 80°C for 2 hours, then diluting with an equal volume of water and heating at 100°C for an additional 8 hours. The aqueous mixture was extracted continuously with ethylene dichloride. The solvent was... [Pg.794]

Among important products manufactured in this manner are substituted propionaldehyde from corresponding substituted ethylene, normal and rso-butyr aldehyde from propylene, iso-octyl alcohol from heptene, and trimethylhexyl alcohol from di-isobutylene. [Pg.628]

The homogeneous complex RhCl(dpm)3 acts also as hydroformylation catalyst [159], Upon illumination of the catalytic photosystem Ru(bpy) +/ascorbic acid/RhCl(dpm)3- in the presence of ethylene and carbon monoxide, propionaldehyde is obtained as photoproduct. Similarly, propene yields the hydroformylation product butyraldeyde. The facts that no hydrogenation products are produced in this assembly, and that hydridocarbonyl-tris-(diphenylphos-phinobenzene-3-sulphonate) rhodium(I), RhHfCOXdpm) -, substitutes RhCl(dpm)3- as catalyst in the photosystem to yield the hydroformylation products at similar efficiency, suggest that the homogeneous catalyst RhClfdpmJj -is transformed into a new catalytic species under CO. A possible route for the interconversion of RhCl(dpm)3 into the hydroformylation catalyst is provided in Scheme 4. [Pg.191]

In 1980, Miller et al. [76] reported the first example of an intermolecular hydroacylation of an aldehyde with an olefin to give a ketone, during their studies of the mechanism of the rhodium-catalyzed intramolecular cyclization of 4-pentenal using ethylene-saturated chloroform as the solvent. Later James and Young [77] reported that the reaction of propionaldehyde with ethylene can be conducted in the presence of RuCl2(PPh3)3 as the catalyst without any solvent at 210 °C, resulting in the formation of 3-pentanone in 2-4% yield (turnover number of 230) (Eq. 49). [Pg.69]

The catalyst used in the process was a Fischer-Tropsch cobalt-thoria catalyst. The temperature was usually between 130-160° and a total pressure of 200 atm. of water gas (1II2 ICO) was usually employed. The reaction was carried out first with ethylene and the products were found to consist of a mixture of diethyl ketone and propionaldehyde. As both products contained a carbonyl or oxo group, the reaction was called the Oxo synthesis. Later it was found that ketone production was relatively unimportant aldehydes were almost always the principal... [Pg.387]

Propionaldehyde is produced by the oxo reaction of ethylene with carbon monoxide and hydrogen. n-Propyl alcohol is produced by hydrogenation of propionaldehyde, and propionic acid is made by oxidation of propionaldehyde. [Pg.371]

Other routes to MMA start from ethylene, propylene or propyne and involve metal catalysis at some stage of multi-step transformations for example by the hydroformylation of ethylene to intermediate propionaldehyde, oxidation to propionic acid, followed by condensation with formaldehyde. The Pd-catalyzed carbonylation of propyne to MMA is a further method. However only the ethylene route has found some industrial application (see Chapter 4, Section 4.3.1). [Pg.55]

The Wacker-Hoechst process has been practised commercially since 1964. In this liquid phase process propylene is oxidized to acetone with air at 110-120°C and 10-14 bar in the presence of a catalyst system containing PdCl2. As in the oxidation of ethylene, Pd(II) oxidizes propylene to acetone and is reduced to Pd(0) in a stoichiometric reaction, and is then reoxidized with the CuCl2/CuCl redox system. The selectivity to acetone is 92% propionaldehyde is also formed with a selectivity of 2-4%. The conversion of propylene is more than 99%. [Pg.69]

A powerful oxidizer. Explosive reaction with acetaldehyde, acetic acid + heat, acetic anhydride + heat, benzaldehyde, benzene, benzylthylaniUne, butyraldehyde, 1,3-dimethylhexahydropyrimidone, diethyl ether, ethylacetate, isopropylacetate, methyl dioxane, pelargonic acid, pentyl acetate, phosphoms + heat, propionaldehyde, and other organic materials or solvents. Forms a friction- and heat-sensitive explosive mixture with potassium hexacyanoferrate. Ignites on contact with alcohols, acetic anhydride + tetrahydronaphthalene, acetone, butanol, chromium(II) sulfide, cyclohexanol, dimethyl formamide, ethanol, ethylene glycol, methanol, 2-propanol, pyridine. Violent reaction with acetic anhydride + 3-methylphenol (above 75°C), acetylene, bromine pentafluoride, glycerol, hexamethylphosphoramide, peroxyformic acid, selenium, sodium amide. Incandescent reaction with alkali metals (e.g., sodium, potassium), ammonia, arsenic, butyric acid (above 100°C), chlorine trifluoride, hydrogen sulfide + heat, sodium + heat, and sulfur. Incompatible with N,N-dimethylformamide. [Pg.365]

Fig. 27. Analysis throughout the course of the propionaldehyde oxidation at 220 °C [20], Aldehyde pressure = O2 pressure = 50 torr. (a) Propionaldehyde (b) oxygen (c) peroxide (d) carbon monoxide (e) acid (f) acetaldehyde (g) ethane (h) carbon dioxide (j) ethylene. Fig. 27. Analysis throughout the course of the propionaldehyde oxidation at 220 °C [20], Aldehyde pressure = O2 pressure = 50 torr. (a) Propionaldehyde (b) oxygen (c) peroxide (d) carbon monoxide (e) acid (f) acetaldehyde (g) ethane (h) carbon dioxide (j) ethylene.

See other pages where 0- propionaldehyde, ethylene is mentioned: [Pg.329]    [Pg.461]    [Pg.462]    [Pg.789]    [Pg.791]    [Pg.234]    [Pg.618]    [Pg.732]    [Pg.18]    [Pg.766]    [Pg.164]    [Pg.69]    [Pg.65]    [Pg.289]    [Pg.301]    [Pg.485]    [Pg.122]    [Pg.316]    [Pg.55]    [Pg.498]   


SEARCH



0- propionaldehyde, ethylene acetal

3- propionaldehyd

Propionaldehyde

© 2024 chempedia.info