Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Properties thermodynamic quantities

The terms AG, AH, and AS are state functions and depend only on the identity of the materials and the initial and final state of the reaction. Tables of thermodynamic quantities are available for most known materials (see also Thermodynamic properties) (11,12). [Pg.506]

Nevertheless, large-scale phenomena and complicated phase diagrams cannot be investigated within realistic models at the moment, and this is not very likely to change soon. Therefore, theorists have often resorted to coarse-grained models, which capture the features of the substances believed to be essential for the properties of interest. Such models can provide qualitative and semiquantitative insight into the physics of these materials, and hopefully establish general relationships between microscopic and thermodynamic quantities. [Pg.637]

The solid is pale blue the liquid is an intense blue at low temperatures but the colour fades and becomes greenish due to the presence of NO2 at higher temperatures. The dissociation also limits the precision with which physical properties of the compound can be determined. At 25°C the dissociative equilibrium in the gas phase is characterized by the following thermodynamic quantities ... [Pg.454]

It is reasonable to expeet that models in ehemistry should be capable of giving thermodynamic quantities to chemical accuracy. In this text, the phrase thermodynamic quantities means enthalpy changes A//, internal energy changes AU, heat capacities C, and so on, for gas-phase reactions. Where necessary, the gases are assumed ideal. The calculation of equilibrium constants and transport properties is also of great interest, but I don t have the space to deal with them in this text. Also, the term chemical accuracy means that we should be able to calculate the usual thermodynamic quantities to the same accuracy that an experimentalist would measure them ( 10kJmol ). [Pg.319]

As chemists, we are most often concerned with reactions proceeding under conditions in which the temperature and pressure are the variables we control. Therefore, it is useful to have a set of properties that describe the effect of a change in concentration on the various thermodynamic quantities under conditions of constant temperature and pressure. We refer to these properties as the partial molar quantities. [Pg.208]

A technical handbook contains tables of thermodynamic quantities for common reactions. If you want to know whether a certain cell reaction has a positive standard emf, which of the following properties would give you that information directly (on inspection) Which would not Explain, (a) AG° (b) AEf° (c) AS° (d) ALT (e) K. [Pg.646]

A listing of thermodynamic properties determined by a full range of methods enables the ArG° values to be determined and hence the allowed reactions and equilibrium constants for all reactions. A tabulation of some thermodynamic quantities is found in Appendix C. [Pg.230]

Several material properties exhibit a distinct change over the range of Tg. These properties can be classified into three major categories—thermodynamic quantities (i.e., enthalpy, heat capacity, volume, and thermal expansion coefficient), molecular dynamics quantities (i.e., rotational and translational mobility), and physicochemical properties (i.e., viscosity, viscoelastic proprieties, dielectric constant). Figure 34 schematically illustrates changes in selected material properties (free volume, thermal expansion coefficient, enthalpy, heat capacity, viscosity, and dielectric constant) as functions of temperature over the range of Tg. A number of analytical methods can be used to monitor these and other property changes and... [Pg.72]

In order to utilise our colloids as near hard spheres in terms of the thermodynamics we need to account for the presence of the medium and the species it contains. If the ions and molecules intervening between a pair of colloidal particles are small relative to the colloidal species we can treat the medium as a continuum. The role of the molecules and ions can be allowed for by the use of pair potentials between particles. These can be determined so as to include the role of the solution species as an energy of interaction with distance. The limit of the medium forms the boundary of the system and so determines its volume. We can consider the thermodynamic properties of the colloidal system as those in excess of the solvent. The pressure exerted by the colloidal species is now that in excess of the solvent, and is the osmotic pressure II of the colloid. These ideas form the basis of pseudo one-component thermodynamics. This allows us to calculate an elastic rheological property. Let us consider some important thermodynamic quantities for the system. We may apply the first law of thermodynamics to the system. The work done in an osmotic pressure and volume experiment on the colloidal system is related to the excess heat adsorbed d Q and the internal energy change d E ... [Pg.150]

It is this last characteristic that is used most frequently in testing thermodynamic functions for exactness. If the differential li/ of a thermodynamic quantity J is exact, then J is called a thermodynamic property or a state function. [Pg.17]

V.2.1 Centroid transition state theory. A third methodology, is to construct approximate theories for dynamical properties, which make use of only thermodynamic quantities. In analogy with classical TST, Gillan, Voth and coworkers have formulated and studied a quantum TST which is based on the centroid potential of mean force Wc (q) ... [Pg.29]

In the system Th(IV)-H20 three sets of thermodynamic quantities can be derived from experimental data (1) the hydrolysis constants l°gio j3° and log10 /34 of ThOH3+ and Th(OH)4(aq), respectively, have been determined potentiometrically by several authors over a wide range of ionic strength (for references see Hummel et al. 2002) (2) the thermodynamic properties of Th02(cr) have been determined by calorimetry, and thus a solubility product logio K°s 0 (cr) for... [Pg.568]

The introduction of heat capacity into the relationships for thermal conductivity and the Prandtl number gives us an opportunity to make a clarification regarding these two quantities. Thermal conductivity is a true heat transport property it describes the ability of a material to transport heat via conduction. Heat capacity, on the other hand, is a thermodynamic quantity and describes the ability of a material to store heat as energy. The latter, while not technically a transport property, will nonetheless be described in this chapter for the various materials types, due in part to its theoretical relationship to thermal conductivity, as given by Eq. (4.35) and (4.36), and, more practically, because it is often used in combination with thermal conductivity as a design parameter in materials selection. [Pg.318]

A quantitative analysis of acid-base properties of azoles (see Section IV,B) requires the knowledge of thermodynamic quantities necessary to complete the thermodynamic cycle between the gas phase and the solution. Work in progress is aimed to obtain this information for parent azoles. For instance, the cycle has been determined for the imidazole/pyrazole pair (Fig. 3) (86JA3237). [Pg.226]

In the present article, we focus on the scaled particle theory as the theoretical basis for interpreting the static solution properties of liquid-crystalline polymers. It is a statistical mechanical theory originally proposed to formulate the equation of state of hard sphere fluids [11], and has been applied to obtain approximate analytical expressions for the thermodynamic quantities of solutions of hard (sphero)cylinders [12-16] or wormlike hard spherocylinders [17, 18]. Its superiority to the Onsager theory lies in that it takes higher virial terms into account, and it is distinctive from the Flory theory in that it uses no artificial lattice model. We survey this theory for wormlike hard spherocylinders in Sect. 2, and compare its predictions with typical data of various static solution properties of liquid-crystalline polymers in Sects. 3-5. As is well known, the wormlike chain (or wormlike cylinder) is a simple yet adequate model for describing dilute solution properties of stiff or semiflexible polymers. [Pg.91]

Exploiting the principles of statistical mechanics, atomistic simulations allow for the calculation of macroscopically measurable properties from microscopic interactions. Structural quantities (such as intra- and intermolecular distances) as well as thermodynamic quantities (such as heat capacities) can be obtained. If the statistical sampling is carried out using the technique of molecular dynamics, then dynamic quantities (such as transport coefficients) can be calculated. Since electronic properties are beyond the scope of the method, the atomistic simulation approach is primarily applicable to the thermodynamics half of the standard physical chemistry curriculum. [Pg.210]

Properties other than free-energy changes are usually considerably more difficult to evaluate to an equivalent level of accuracy. One approach is simply to attempt a brute force calculation for different systems analogous to that outlined for V in Eqs. (12.9) and (12.10). However, this approach has little value in any but the simplest of systems owing to the large uncertainties in the absolute values of the thermodynamic quantities. [Pg.444]

So far, in this discussion we have considered mechanical properties of the gas (in the sense of classical mechanics) that involve m and v. Nonmechanical properties are quantities like the temperature and thermodynamic functions. We can begin to make a connection between the two by comparing Eq. 8.6 with the ideal gas law pV = nRT. Equating the two, we obtain the kinetic theory result... [Pg.337]

The partition function provides the bridge to calculating thermodynamic quantities of interest. Using the molecular partition function and formulas derived in this section, we will be able to calculate the internal energy E, the heat capacity Cp, and the entropy S of a gas from fundamental properties of the molecule, such as its mass, moments of inertia, and vibrational frequencies. Thus, if thermodynamic data are lacking for a species of interest, we usually know, or can estimate, these molecular constants, and we can calculate reasonably accurate thermodynamic quantities. In Section 8.6 we illustrate the practical application of the formulas derived here with a numerical example of the thermodynamic properties for the species CH3. [Pg.353]

The structure of living cells depends very much on the covalent bonds within individual molecules and on covalent crosslinks that sometimes form between molecules. However, weaker forces acting between molecules and between different parts of the same molecule are responsible for many of the most important properties of biochemical substances. These are described as van der Waals forces, electrostatic forces, hydrogen bonds, and hydrophobic interactions. In the discussion that follows the thermodynamic quantities AH, AS, and AG will be used. If necessary, please see Chapter 6 for definitions and a brief review. [Pg.46]

At the equilibrium potential, both anodic and cathodic processes of a single electron transfer reaction take place at the same exchange rate (exchange current density) and no net current is observed through the external circuit. The exchange rate reflects the kinetics of the overall reaction and, in many cases, the electrocatalytic properties of the electrode surface. The open circuit potential, in this case, is the equilibrium potential and is therefore a thermodynamic quantity independent of kinetic factors and is related to the activities in solution through the Nemst law. [Pg.68]


See other pages where Properties thermodynamic quantities is mentioned: [Pg.3267]    [Pg.3267]    [Pg.2]    [Pg.335]    [Pg.269]    [Pg.493]    [Pg.598]    [Pg.687]    [Pg.107]    [Pg.92]    [Pg.380]    [Pg.412]    [Pg.113]    [Pg.92]    [Pg.3]    [Pg.77]    [Pg.337]    [Pg.152]    [Pg.40]    [Pg.96]    [Pg.27]    [Pg.562]    [Pg.328]    [Pg.109]    [Pg.139]    [Pg.150]    [Pg.744]    [Pg.91]   
See also in sourсe #XX -- [ Pg.441 ]




SEARCH



Thermodynamic quantities

© 2024 chempedia.info