Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Propanediol, reactions

Propanediol, reaction prods, with aluminum chloride hydroxide (Al2CI(OH)s). See Aluminum chlorohydrex PG... [Pg.3714]

It was observed that for methylmalonyl-CoA (reaction 6-2), the X group (—COSCoA) is transferred intramolecularly and the hydrogen which is transferred does not exchange with water during the process. The same observation applies for the dehydration of propanediol (reaction 6-4) and the conversion of glutamic acid to methylaspartic acid (reaction 6-1). However,... [Pg.372]

The main intermediates in the pentaerythritol production reaction have been identified and synthesized (50,51) and the intermediate reaction mechanisms deduced. Without adequate reaction control, by-product formation can easily occur (52,53). Generally mild reaction conditions are favored for optimum results (1,54). However, formation of by-products caimot be entirely eliminated, particularly dipentaerytbritol and the linear formal of pentaerythritol, 2,2 -[meth5lenebis(oxymethylene)]bis(2-hydroxymethyl-1,3-propanediol) [6228-26-8] ... [Pg.465]

HVP products prepared by hydrolysis with HCl contain varying amounts of glycerol chlorohydrins, such as 3-chloro-l,2-propanediol [96-24-2] and l,3-dichloro-2-propanol [96-23-1J, depending on reaction conditions and Hpid contents of the starting material (135). As a result of their toxicides, regulating agencies in many countnes have restncted the contents of these compounds in food. [Pg.470]

In acetic acid solvent, ethylene gives 1,3-propanediol acetates (46) and propylene gives 1,3-butanediol acetates (47). A similar reaction readily occurs with olefinic alcohols and ethers, diolefins, and mercaptans (48). [Pg.492]

On dehydration, nitro alcohols yield nitro-olefins. The ester of the nitro alcohol is treated with caustic or is refluxed with a reagent, eg, phthaUc anhydride or phosphoms pentoxide. A mil der method involves the use of methane sulfonyl chloride to transform the hydroxyl into a better leaving group. Yields up to 80% after a reaction time of 15 min at 0°C have been reported (5). In aqueous solution, nitro alcohols decompose at pH 7.0 with the formation of formaldehyde. One mole of formaldehyde is released per mole of monohydric nitro alcohol, and two moles of formaldehyde are released by the nitrodiols. However, 2-hydroxymethyl-2-nitro-l,3-propanediol gives only two moles of formaldehyde instead of the expected three moles. The rate of release of formaldehyde increases with the pH or the temperature or both. [Pg.61]

Meth5l-l,3-propanediol is produced as a by-product. The hydroformylation reaction employs a rhodium catalyst having a large excess of TPP (1) and an equimolar (to rhodium) amount of 1,4-diphenylphosphinobutane (DPPB) (4). Aqueous extraction/decantation is also used in this reaction as an alternative means of product/catalyst separation. [Pg.470]

The stmcture of individual block polymers is deterrnined by the nature of the initiator (1,2-propanediol above), the sequence of addition of propylene and ethylene oxides, and the percentage of propylene and ethylene oxides in the surfactant. Thus, when the order of addition is reversed, a different stmcture is obtained in which the hydrophobic moieties are on the outside of the molecule. With ethylene glycol as the initiator, the reactions are as foUows ... [Pg.254]

Reaction of TYZOR DC and 1,3-propanediol gives titanium 1,3-propylenedioxide bis(ethyl acetoacetate) [36497-11-7J, which can be used as a noncorrosive curing catalyst for room-temperature-vulcanizing siUcone mbber compositions (99). Similar stmctures could be made, starting with titanium bis-acetylacetonates, such as that shown in stmcture (9). [Pg.147]

From Glycerol. A procedure for synthesizing alph a-m on ochl orohydrin (3-chloro-l,2-propanediol) in 85—88% yields by the reaction of glycerol [56-81-5] with aqueous hydrochloric acid in the presence of a catalytic amount of acetic acid has been developed (59). An anhydrous procedure that involves the reaction of glycerol and HCl gas in the presence of acetic acid has also been described (60). [Pg.74]

In contrast to the hydrolysis of prochiral esters performed in aqueous solutions, the enzymatic acylation of prochiral diols is usually carried out in an inert organic solvent such as hexane, ether, toluene, or ethyl acetate. In order to increase the reaction rate and the degree of conversion, activated esters such as vinyl carboxylates are often used as acylating agents. The vinyl alcohol formed as a result of transesterification tautomerizes to acetaldehyde, making the reaction practically irreversible. The presence of a bulky substituent in the 2-position helps the enzyme to discriminate between enantiotopic faces as a result the enzymatic acylation of prochiral 2-benzoxy-l,3-propanediol (34) proceeds with excellent selectivity (ee > 96%) (49). In the case of the 2-methyl substituted diol (33) the selectivity is only moderate (50). [Pg.336]

Plasticizers can be classified according to their chemical nature. The most important classes of plasticizers used in rubber adhesives are phthalates, polymeric plasticizers, and esters. The group phthalate plasticizers constitutes the biggest and most widely used plasticizers. The linear alkyl phthalates impart improved low-temperature performance and have reduced volatility. Most of the polymeric plasticizers are saturated polyesters obtained by reaction of a diol with a dicarboxylic acid. The most common diols are propanediol, 1,3- and 1,4-butanediol, and 1,6-hexanediol. Adipic, phthalic and sebacic acids are common carboxylic acids used in the manufacture of polymeric plasticizers. Some poly-hydroxybutyrates are used in rubber adhesive formulations. Both the molecular weight and the chemical nature determine the performance of the polymeric plasticizers. Increasing the molecular weight reduces the volatility of the plasticizer but reduces the plasticizing efficiency and low-temperature properties. Typical esters used as plasticizers are n-butyl acetate and cellulose acetobutyrate. [Pg.626]

The AMAPs (2-[ arylmethyl amino]-l,3-propanediols) are a class of planar polycyclic aromatic derivatives, which contain polar side-chains. They are known to be DNA intercalators and possess broad spectrum antitumour activity. An approach to C-radiolabelled AMAP derivative 40 used the Bucherer reaction as an initial starting reaction. 2-Naphthol was reacted with 4-bromophenylhydrazine 38 in the presence of sodium metabisulfite and HCl to afford 39. Subsequent derivatisation of 39 afforded 40. [Pg.114]

Propanediol and its derivatives yield 5,6-dihydro-l,3-4/f-oxa-zines (36) by reaction with nitriles in the presence of sulfuric... [Pg.327]

The main use of acrolein is to produce acrylic acid and its esters. Acrolein is also an intermediate in the synthesis of pharmaceuticals and herhicides. It may also he used to produce glycerol hy reaction with isopropanol (discussed later in this chapter). 2-Hexanedial, which could he a precursor for adipic acid and hexamethylene-diamine, may he prepared from acrolein Tail to tail dimenization of acrolein using ruthenium catalyst produces trans-2-hexanedial. The trimer, trans-6-hydroxy-5-formyl-2,7-octadienal is coproduced. Acrolein, may also he a precursor for 1,3-propanediol. Hydrolysis of acrolein produces 3-hydroxypropionalde-hyde which could he hydrogenated to 1,3-propanediol. ... [Pg.217]

Show the structure of the acetal you would obtain by acid-catalyzed reaction of 2-pentanone with 1,3-propanediol. [Pg.720]

Robins6 investigated the reaction of 1,2-propanediol with maleic add and found an overall reaction order of 3 which is in agreement with Flory s assumptions. The same order was found by Ivanov325 for the l,10-decanediol/2-propylheptanedioic system. [Pg.81]

Several authors studied the influence of substituents on activation parameters. Bad-dar et al.315 who studied the polyesterification of y-arylitaconic anhydrides and adds with 1,2-ethanediol found that in the non-catalyzed reaction a p-methoxy substituent decreases both the activation enthalpy and the entropy whereas an increase is observed with a p-chloro substituent. On the other hand, Huang et al., who studied the esterification of 2,2-dimethyl-l,3-propanediol with benzoic, butanedioic, hexanedioic, decanedioic and o-phthalic add found the same values since the activation enthalpy is 64 kJ mol-1 for the first reaction and 61 kJ mol-1 for the others. [Pg.84]

Maleic anhydride, 98 g (1.0 mol), 148 g (1.0 mol) of phthalic anhydride, and 160 g (2.1 mol) of 1,2-propanediol are poly condensed in a three-necked flask equipped with a mechanical stirrer, a nitrogen inlet, and a distillation head connected to a condenser and a receiver flask. The flask is placed in a salt bath preheated at 160°C. Water begins to distill and the temperature is then raised gradually to 190°C. The polycondensation is stopped (after about 15 h) when the reaction mixture has an acid number of 50 (see Section 2.3.8.4.1) (Scheme 2.54). A slightly different procedure is described in ref. 423. [Pg.101]

The second group of studies tries to explain the solvent effects on enantioselectivity by means of the contribution of substrate solvation to the energetics of the reaction [38], For instance, a theoretical model based on the thermodynamics of substrate solvation was developed [39]. However, this model, based on the determination of the desolvated portion of the substrate transition state by molecular modeling and on the calculation of the activity coefficient by UNIFAC, gave contradictory results. In fact, it was successful in predicting solvent effects on the enantio- and prochiral selectivity of y-chymotrypsin with racemic 3-hydroxy-2-phenylpropionate and 2-substituted 1,3-propanediols [39], whereas it failed in the case of subtilisin and racemic sec-phenetyl alcohol and traws-sobrerol [40]. That substrate solvation by the solvent can contribute to enzyme enantioselectivity was also claimed in the case of subtilisin-catalyzed resolution of secondary alcohols [41]. [Pg.13]

Semirigid phosphonamide ligands have been synthesized from the corand precursors by the reaction of 1,3-propanediol ditosylate or 1,2-dichloroethane <96JOC8904>. [Pg.340]

Acetalization or ketalization with silylated glycols or 1,3-propanediols and the formation of thioketals by use of silylated 1,2-ethylenedithiols and silylated 2-mer-captoethylamines have already been discussed in Sections 5.1.1 and 5.1.5. For cyclizations of ketones such as cyclohexanone or of benzaldehyde dimethyl acetal 121 with co-silyl oxyallyltrimethylsilanes 640 to form unsaturated spiro ethers 642 and substituted tetrahydrofurans such as 647, see also Section 5.1.4. (cf. also the reaction of 654 to give 655 in Section 5.2) Likewise, Sila-Pummerer cyclizations have been discussed in Chapter 8 (Schemes 8.17-8.20). [Pg.217]

It is important that chemical engineers master an understanding of metabolic engineering, which uses genetically modified or selected organisms to manipulate the biochemical pathways in a cell to produce a new product, to eliminate unwanted reactions, or to increase the yield of a desired product. Mathematical models have the potential to enable major advances in metabolic control. An excellent example of industrial application of metabolic engineering is the DuPont process for the conversion of com sugar into 1,3-propanediol,... [Pg.930]

In 2000, other S/N-ferrocenyloxazolines were prepared by Ai t-Haddou et al. starting from ehiral 2-amino-3-phenyl-l,3-propanediol. The corresponding P/N-analogues were also prepared in order to compare their efficiency in the test reaction. As shown in Scheme 1.68, both ligands gave good results in terms of both activity and enantioselectivity with a better result for the S/N ligand. [Pg.54]


See other pages where Propanediol, reactions is mentioned: [Pg.248]    [Pg.374]    [Pg.248]    [Pg.374]    [Pg.406]    [Pg.220]    [Pg.446]    [Pg.307]    [Pg.366]    [Pg.242]    [Pg.123]    [Pg.159]    [Pg.252]    [Pg.378]    [Pg.831]    [Pg.39]    [Pg.282]    [Pg.317]    [Pg.944]    [Pg.1461]    [Pg.664]    [Pg.38]    [Pg.40]    [Pg.65]    [Pg.254]    [Pg.32]    [Pg.256]   
See also in sourсe #XX -- [ Pg.521 ]




SEARCH



1,2-Propanediol substitution reactions

1,3-Propanediol

1.3- Propanediol reactions with carbonyls

© 2024 chempedia.info