Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Probe molecules, acidic/basic

The acid sites strength can be determined by measuring the heats of adsorption of basic probe molecules. The basic probes most commonly used are NH3 (pTTa = 9.24, proton affinity in gas-phase = 857.7 kJ/mol) and pyridine (pTTa = 5.19, proton affinity in gas-phase = 922.2 kJ/mol). The center of basicity of these probes is the electron lone pair on the nitrogen. When chemisorbed on a surface possessing acid properties, these probes can interact with acidic protons, electron acceptor sites, and hydrogen from neutral or weakly acidic hydroxyls. [Pg.224]

Carbon dioxide, C02, is a fairly small molecule with acidic properties, which has frequently been used as a probe molecule for basic surface sites and as a poison in catalytic reactions. As shown in the following, C02 adsorption onto oxide surfaces leads to a variety of surface species such as bicarbonates and carbonates that coordinate to surface metal ions in various ways. The type of the coordination influences the symmetry of these ligands so that different surface species held by distinct surface sites can be distinguished by means of their infrared absorptions (162). The characteristic infrared (and Raman) bands of C02 and possible surface species are summarized in Table VI. The wave-number range below 1000 cm"1 was usually not accessible in studies on adsorbed C02 because of the strong absorption of the oxides at lower wave numbers. [Pg.234]

The acidic and adsorptive properties of the samples in gas phase were evaluated in a microcalorimeter of Tian-Calvet type (C80, Setaram) linked to a volumetric line. For the estimation of the acidic properties, NH3 (pKa = 9.24, proton affinity in gas phase = 857.7 kJ.mol-1, kinetic diameter = 0.375 nm) and pyridine (pKa = 5.19, proton affinity in gas phase = 922.2 kJ.mol-1, kinetic diameter = 0.533 nm) were chosen as basic probe molecules. Different VOC s such as propionaldehyde, 2-butanone and acetonitrile were used in gas phase in order to check the adsorption capacities of the samples. [Pg.202]

Adsorptions of probe molecules followed by Infrared were also carried out in order to estimating the acidity and the basicity of aluminas. Carbon dioxide and 2,6-dimethylpyridine were respectively used for the basicity and the acidity. Figure 3 reports the results obtained. [Pg.223]

Another possibility for characterizing zeolite acid sites is the adsorption of basic probe molecules and subsequent spectroscopic investigation of the adsorbed species. Phosphines or phosphine oxides have been quite attractive candidates due to the high chemical shift sensitivity of 31P, when surface interactions take place [218-222]. This allows one to obtain information on the intrinsic accessibility and acidity behavior, as well as the existence of different sites in zeolite catalysts. [Pg.212]

The effect of probe molecules on the 27A1 NMR has attracted some attention recently. In particular, the determination of the quadrupole coupling constant, Cq, is a sensitive means to learn more about the bonding situation at the aluminum in acid sites, and how it reflects the interaction with basic probe molecules. If one of the four oxygen atoms in an AIO4 tetrahedral coordination is protonated, as in a zeolitic acid site, the coordination is somewhat in between a trigonal and a tetrahedral A1 environment [232]. The protonated oxygen decreases its bond order to A1 to approximately half of its size compared to an unprotonated zeolite. [Pg.213]

A very convenient method to quantitatively determined the number of Bronsted add sites in the often used photochemical nano-vessels, zeolites X and Y, is available.28 This method take advantage of indicator/probe molecules which undergo an intense color change upon protonation within the zeolite pore network. The amount of a base necessary to quench the color change gives a direct measure of the concentration of acidic sites. The base used to titrate the Bronsted sites must be more basic than the probe molecule and sufficiently basic to be completely protonated. [Pg.230]

Two types of probe molecules have been used for the detection of Lewis and Bronsted acid sites. The first involves the adsorption of relatively strong basic molecules such as pyridine, ammonia, quinoline, and diazines. The second kind involves the adsorption of weak base molecules such as CO, NO, acetone, acetonitrile, and olefins. The pioneering works of Parry27 and Hughes and... [Pg.50]

Basic molecules such as pyridine and NH3 have been the popular choice as the basic probe molecules since they are stable and one can differentiate and quantify the Bronsted and Lewis sites. Their main drawback is that they are very strong bases and hence adsorb nonspecifically even on the weakest acid sites. Therefore, weaker bases such as CO, NO, and acetonitrile have been used as probe molecules for solid acid catalysts. Adsorption of CO at low temperatures (77 K) is commonly used because CO is a weak base, has a small molecular size, a very intense vc=0 band that is quite sensitive to perturbations, is unreactive at low temperature, and interacts specifically with hydroxyl groups and metal cationic Lewis acid sites.26... [Pg.51]

Hydrogen bond donor solvents are simply those containing a hydrogen atom bound to an electronegative atom. These are often referred to as protic solvents, and the class includes water, carboxylic acids, alcohols and amines. For chemical reactions that involve the use of easily hydrolysed or solvolysed compounds, such as AICI3, it is important to avoid protic solvents. Hydrogen bond acceptors are solvents that have a lone pair available for donation, and include acetonitrile, pyridine and acetone. Kamlet-Taft a and ft parameters are solvatochromic measurements of the HBD and HBA properties of solvents, i.e. acidity and basicity, respectively [24], These measurements use the solvatochromic probe molecules V, V-die lliy I -4-n i in tan iline, which acts as a HBA, and 4-nitroaniline, which is a HBA and a HBD (Figure 1.17). [Pg.24]

Infrared spectroscopy can be used to obtain a great deal of information about zeolitic materials. As mentioned earlier, analysis of the resulting absorbance bands can be used to get information about the structure of the zeolite and other functional groups present due to the synthesis and subsequent treatments. In addition, infrared spectroscopy can be combined with adsorption of weak acid and base probe molecules to obtain information about the acidity and basicity of the material. Other probe molecules such as carbon monoxide and nitric oxide can be used to get information about the oxidation state, dispersion and location of metals on metal-loaded zeolites. [Pg.113]

The probe molecule should interact selectively with acidic or basic sites. [Pg.125]

The acidity probes discussed above are the most commonly used. However, the use of many different probes has been reported in the literature. This list includes nitriles, alkanes, amines, water, di-hydrogen, deuterium, isotopically labeled molecules, benzene, etc. Probe molecules can also be used to measure basicity on zeohtes. In this case, weakly acidic molecules such as CO2, pyrrole, acetic acid and halogenated light paraffins have been used. Space does not permit discussion of these in any detail, but information about these probes and their applications can be found in the following references [87, 127-130]. [Pg.135]

Ammonia TPD is very simple and versatile. The use of propylamine as a probe molecule is starting to gain some popularity since it decomposes at the acid site to form ammonia and propene directly. This eliminates issues with surface adsorption observed with ammonia. The conversion of the TPD data into acid strength distribution can be influenced by the heating rate and can be subjective based on the selection of desorption temperatures for categorizing acid strength. Since basic molecules can adsorb on both Bronsted and Lewis acid sites, the TPD data may not necessarily be relevant for the specific catalytic reaction of interest because of the inability to distinguish between Bronsted and Lewis acid sites. [Pg.158]

While average deprotonation energy is a good measure of the intrinsic Bronsted acid strength of a zeoHte, it is the extrinsic acidity, also impacted by the chemical interaction between the protonated basic probe molecule and the deprotonated zeoHte, that really counts for catalysis. [Pg.421]

Adsorption of a specific probe molecule on a catalyst induces changes in the vibrational spectra of surface groups and the adsorbed molecules used to characterize the nature and strength of the basic sites. The analysis of IR spectra of surface species formed by adsorption of probe molecules (e.g., CO, CO2, SO2, pyrrole, chloroform, acetonitrile, alcohols, thiols, boric acid trimethyl ether, acetylenes, ammonia, and pyridine) was reviewed critically by Lavalley (50), who concluded that there is no universally suitable probe molecule for the characterization of basic sites. This limitation results because most of the probe molecules interact with surface sites to form strongly bound complexes, which can cause irreversible changes of the surface. In this section, we review work with some of the probe molecules that are commonly used for characterizing alkaline earth metal oxides. [Pg.246]

Ammonia and pyridine are frequently used as probe molecules for the characterization of acidic surfaces, but they also adsorb on strongly basic sites. Tsyganenko et al. (54) proposed various species resulting from NH3 adsorption on basic solids (Scheme 1). The formation of species I corresponds to hydrogen bonding to a basic surface oxygen, and species II, formed by dissociation to give NH2 and hydroxyl species, involves an acid-base site. Such adsorption requires... [Pg.246]

For basicity measurements, the number of acidic probes able to cover a wide range of strength is rather small [166]. The most common acidic probe molecules used are CO2 (p/fa = 6.37) and SO2 (p/fa = 1.89). Carboxylic acids such as acetic acid can also be used but dimmers can be formed, particularly at high coverage. Pyrrole may also be used, particularly at low adsorption temperature, but has sometimes shown some amphoteric character [103]. Hexafluoroisopropanol has also been used to characterize the surface basicity of some solids [145]. [Pg.225]

The surface of alumina presents strong acid and basic sites, as demonstrated by the differential heats of adsorption of basic probe molecules such as ammonia [169- 171] and pyridine [169,172] or of acidic probe molecules such as SO2 [169,171] and CO2 [173,174]. Table 13.2 presents a survey of microcalorimetric studies performed for AI2O3. [Pg.227]

The pretreatment temperature is an important factor that influences the acidic/ basic properties of solids. For Brpnsted sites, the differential heat is the difference between the enthalpy of dissociation of the acidic hydroxyl and the enthalpy of protonation of the probe molecule. For Lewis sites, the differential heat of adsorption represents the energy associated with the transfer of electron density toward an electron-deficient, coordinatively unsaturated site, and probably an energy term related to the relaxation of the strained surface [147,182]. Increasing the pretreatment temperature modifies the surface acidity of the solids. The influence of the pretreatment temperature, between 300 and 800°C, on the surface acidity of a transition alumina has been studied by ammonia adsorption microcalorimetry [62]. The number and strength of the strong sites, which should be mainly Lewis sites, have been found to increase when the temperature increases. This behavior can be explained by the fact that the Lewis sites are not completely free and that their electron pair attracting capacity can be partially modified by different OH group environments. The different pretreatment temperatures used affected the whole spectrum of adsorption heats... [Pg.227]


See other pages where Probe molecules, acidic/basic is mentioned: [Pg.106]    [Pg.109]    [Pg.369]    [Pg.177]    [Pg.101]    [Pg.102]    [Pg.105]    [Pg.211]    [Pg.230]    [Pg.252]    [Pg.252]    [Pg.49]    [Pg.50]    [Pg.51]    [Pg.134]    [Pg.86]    [Pg.124]    [Pg.130]    [Pg.131]    [Pg.151]    [Pg.420]    [Pg.428]    [Pg.185]    [Pg.244]    [Pg.246]    [Pg.247]    [Pg.210]    [Pg.211]    [Pg.212]    [Pg.225]   
See also in sourсe #XX -- [ Pg.65 ]




SEARCH



Acid probe molecules

Acidic probe

Acidic-basic

Acidity probe

Acidity/basicity

Basic probe molecules

Basicity probe

Basicity, probe molecules

Probe molecules

© 2024 chempedia.info