Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Desulfurization reaction

The reverse reaction, desulfurization, has been performed on 3-mer-capto-1,2,4-triazolo [4,3-a]pyrimidines (151) by treatment with water (59JOC787) or ammonium hydroxide (57BRP874204 60YZ1542) in the presence of Raney nickel or nitric acid (60JOC361) to give 1,2,4-tria-zolo[4,3-a]pyrimidines (152) (Scheme 61). [Pg.165]

The problem of the synthesis of highly substituted olefins from ketones according to this principle was solved by D.H.R. Barton. The ketones are first connected to azines by hydrazine and secondly treated with hydrogen sulfide to yield 1,3,4-thiadiazolidines. In this heterocycle the substituents of the prospective olefin are too far from each other to produce problems. Mild oxidation of the hydrazine nitrogens produces d -l,3,4-thiadiazolines. The decisive step of carbon-carbon bond formation is achieved in a thermal reaction a nitrogen molecule is cleaved off and the biradical formed recombines immediately since its two reactive centers are hold together by the sulfur atom. The thiirane (episulfide) can be finally desulfurized by phosphines or phosphites, and the desired olefin is formed. With very large substituents the 1,3,4-thiadiazolidines do not form with hydrazine. In such cases, however, direct thiadiazoline formation from thiones and diazo compounds is often possible, or a thermal reaction between alkylideneazinophosphoranes and thiones may be successful (D.H.R. Barton, 1972, 1974, 1975). [Pg.35]

The Gassman synthesis has been a particularly useful method for the synthesis of oxindolcs[lb,8]. Use of methylthioacetate esters in the reactions leads to 3-(methylthio)oxindoles which can be desulfurized with Raney nickel. Desulfurization can also be done by reduction with zinc or tin[10,ll]. [Pg.73]

Active Raney nickel induces desulfurization of many sulfur-containing heterocycles thiazoles are fairly labile toward this ring cleavage agent. The reaction occurs apparently by two competing mechanisms (481) in the first, favored by alkaline conditions, ring fission occurs before desul-, furization, whereas in the second, favored by the use of neutral catalyst, the initial desulfurization is followed by fission of a C-N bond and formation of carbonyl derivatives by hydrolysis (Scheme 95). [Pg.134]

Methanation of the clean desulfurized main gas (less than 1 ppm total sulfur) is accompHshed in the presence of a nickel catalyst at temperatures from 260—400°C and pressure range of 2—2.8 MPa (300—400 psi). Equations and reaction enthalpies are given in Table 4. [Pg.70]

Naphtha desulfurization is conducted in the vapor phase as described for natural gas. Raw naphtha is preheated and vaporized in a separate furnace. If the sulfur content of the naphtha is very high, after Co—Mo hydrotreating, the naphtha is condensed, H2S is stripped out, and the residual H2S is adsorbed on ZnO. The primary reformer operates at conditions similar to those used with natural gas feed. The nickel catalyst, however, requires a promoter such as potassium in order to avoid carbon deposition at the practical levels of steam-to-carbon ratios of 3.5—5.0. Deposition of carbon from hydrocarbons cracking on the particles of the catalyst reduces the activity of the catalyst for the reforming and results in local uneven heating of the reformer tubes because the firing heat is not removed by the reforming reaction. [Pg.420]

Additionally, there are a number of useful electrochemical reactions for desulfurization processes (185). Solar—thermal effusional separation of hydrogen from H2S has been proposed (188). The use of microporous Vicor membranes has been proposed to effect the separation of H2 from H2S at 1000°C. These membrane systems function on the principle of upsetting equiUbrium, resulting in a twofold increase in yield over equiUbrium amounts. [Pg.428]

Reaction With Sulfur. An important use of calcium carbide has developed in the iron (qv) and steel (qv) industries where the carbide has been found to be an effective desulfurizing agent for blast-furnace iron. Calcium carbide and sulfur present in the molten metal react... [Pg.458]

The primary reactions occurring during hydrotreating are (43) desulfurization of sulfides, polysulftdes, mercaptans, and thiophene as exemplified by... [Pg.380]

Thiazoles are desulfurized by Raney nickel, a reaction probably initiated by coordination of the sulfur at Ni. The products are generally anions and carbonyl compounds (see Section 4.02.1.8.4). [Pg.61]

Lithioisothiazoles are readily prepared by the action of butyllithium, and the isothiazole ring is desulfurized by Raney nickel (see Section 4.02.1.8). Few cycloaddition reactions are known. [Pg.146]

The most important reaction with Lewis acids such as boron trifluoride etherate is polymerization (Scheme 30) (72MI50601). Other Lewis acids have been used SnCL, Bu 2A1C1, Bu sAl, Et2Zn, SO3, PFs, TiCU, AICI3, Pd(II) and Pt(II) salts. Trialkylaluminum, dialkylzinc and other alkyl metal initiators may partially hydrolyze to catalyze the polymerization by an anionic mechanism rather than the cationic one illustrated in Scheme 30. Cyclic dimers and trimers are often products of cationic polymerization reactions, and desulfurization of the monomer may occur. Polymerization of optically active thiiranes yields optically active polymers (75MI50600). [Pg.146]

S-Alkylthiiranium salts, e.g. (46), may be desulfurized by fluoride, chloride, bromide or iodide ions (Scheme 62) (78CC630). With chloride and bromide ion considerable dealkylation of (46) occurs. In salts less hindered than (46) nucleophilic attack on a ring carbon atom is common. When (46) is treated with bromide ion, only an 18% yield of alkene is obtained (compared to 100% with iodide ion), but the yield is quantitative if the methanesulfenyl bromide is removed by reaction with cyclohexene. Iodide ion has been used most generally. Sulfuranes may be intermediates, although in only one case was NMR evidence observed. Theoretical calculations favor a sulfurane structure (e.g. 17) in the gas phase, but polar solvents are likely to favor the thiiranium salt structure. [Pg.154]

Thermolysis of trithiane (69) or carbonate (70) at reduced pressure yields methylene-thiirane which is stable in cold, dilute solution (Scheme 152) (78JA7436, 78RTC214). A novel acenaphthylene episulfide is obtained by treatment of the six-membered sulfoxide (71) with acetic anhydride (Scheme 153) (68JA1676), and photolysis of (72) gives a low yield of episulfide (73 Scheme 154) (72JA521). Low yields may be due to the desulfurization of the thiiranes under the reaction conditions. [Pg.181]


See other pages where Desulfurization reaction is mentioned: [Pg.323]    [Pg.461]    [Pg.66]    [Pg.229]    [Pg.323]    [Pg.461]    [Pg.66]    [Pg.229]    [Pg.76]    [Pg.280]    [Pg.389]    [Pg.411]    [Pg.438]    [Pg.332]    [Pg.276]    [Pg.343]    [Pg.347]    [Pg.518]    [Pg.216]    [Pg.402]    [Pg.258]    [Pg.268]    [Pg.252]    [Pg.300]    [Pg.80]    [Pg.265]    [Pg.19]    [Pg.140]    [Pg.140]    [Pg.144]    [Pg.148]    [Pg.149]    [Pg.152]    [Pg.153]    [Pg.153]    [Pg.155]    [Pg.166]    [Pg.167]    [Pg.170]   
See also in sourсe #XX -- [ Pg.146 ]




SEARCH



Desulfuration Reactions

Desulfuration Reactions

Desulfuration reactions, functionalizations

Desulfurization reactions, glycosyl

Hydrotreating reactions desulfurization

Hydroxide desulfurization reactions

Oxidative desulfurization reaction scheme

© 2024 chempedia.info