Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pressure filtration, 222 process

Since 1980, a number of new filters have appeared on the market, utilising some form of mechanical compression of the filter cake, either after a conventional pressure filtration process or as a substitute for it. In most designs the compression is achieved by inflating a diaphragm which presses the slurry or the freshly formed filter cake toward the medium, thus squee2ing an additional amount of Hquid out of the cake. [Pg.404]

Up to this point we have considered distributed dilute dispersions of colloidal size particles and macromolecules in continuous liquid media. Where the particles are uncharged and of finite size, they are always separated by a fluid layer irrespective of the nature of the hydrodynamic interactions that take place. In the absence of external body forces such as gravity or a centrifugal field or some type of pressure filtration process, the uncharged particles therefore remain essentially uniformly distributed throughout the solution sample. We have also considered the repulsive electrostatic forces that act between the dispersed particles in those instances where the particles are charged. These repulsive forces will tend to maintain the particles in a uniform distribution. The extent to which a dispersion remains uniformly distributed in the absence of applied external forces, such as those noted above, is described in colloid science by the term stability, whereas colloidal systems in which the dispersed material is virtually insoluble in the solvent are termed lyophobic colloids. [Pg.219]

Deep Bed Filters. Deep bed filtration is fundamentally different from cake filtration both in principle and appHcation. The filter medium (Fig. 4) is a deep bed with pore size much greater than the particles it is meant to remove. No cake should form on the face of the medium. Particles penetrate into the medium where they separate due to gravity settling, diffusion, and inertial forces attachment to the medium is due to molecular and electrostatic forces. Sand is the most common medium and multimedia filters also use garnet and anthracite. The filtration process is cycHc, ie, when the bed is full of sohds and the pressure drop across the bed is excessive, the flow is intermpted and solids are backwashed from the bed, sometimes aided by air scouring or wash jets. [Pg.387]

Soluble impurities can be extracted by washing with deionized or distilled water foUowed by filtration (1,12,26). Powders prepared by wet chemical synthesis are often washed and filtered for purification prior to use. The dewatering (qv) process can be enhanced by pressure filtration. Organic solvents can be used to remove water-insoluble impurities and wash-water sensitive materials. [Pg.306]

In cake or surface filtration, there are two primary areas of consideration continuous filtration, in which the resistance of the filter cake (deposited process solids) is veiy large with respec t to that of the filter media and filtrate drainage, and batch pressure filtration, in which the resistance of the filter cake is not veiy Targe with respect to that of the filter media and filtrate drainage. Batch pressure filters are generally fitted with heavy, tight filter cloths plus a layer of precoat and these represent a significant resistance that must be taken into account. Continuous filters, except for precoats, use relatively open cloths that offer little resistance compared to that of the filter cake. [Pg.1692]

To use Eq. (18--50) one must know the pattern of the filtration process, i.e., the variation of the flow rate and pressure with time. Generally the pumping mechanism determines the filtration flow characteristics and serves as a basis for the following three categories [Tiller and Crump, Chem. Eng. Prog., 73(10), 65 (1977)] ... [Pg.1704]

Belt Presses Belt presses were fiiUy described in the section on filtration. The description here is intended to cover only the parts and designs that apply expression pressure by a mechanism in adchtion to the normal compression obtained from tensioning the belts and pulling them over rollers of smaller and smaller diameters. The tension on the belt produces a squeezing pressure on the filter cake proportional to the diameter of the rollers. Normally, that static pressure is calculated as P = 2T/D, where P is the pressure (psi), T is the tension on the belts (Ib/hnear in), and D is the roller diameter. This calculation results in values about one-half as great as the measured values because it ignores pressure created by drive torque and some other forces [Laros, Advances in Filtration and Separation Technology, 7 (System Approach to Separation and Filtration Process Equipment), pp. 505-510 (1993)]. [Pg.1744]

When the space above the suspension is subjected to compressed gas or the space under the filter plate is under a vacuum, filtration proceeds under a constant pressure differential (the pressure in the receivers is constant). The rate of filtration decreases due to an increase in the cake thickness and, consequently, flow resistance. A similar filtration process results from a pressure difference due to the hydrostatic pressure of a suspension layer of constant thickness located over the filter medium. [Pg.158]

For a constant pressure drop and temperature filtration process all the parameters in Equation 9, except V and x, are constant. Integrating Equation 9 over the limits of 0 to V, from 0 to x, we obtain ... [Pg.165]

Having a differential pressure in the above filtration process, and reducing the pressure drop from 10 to 5 psi, increases the filter area by 19%. The main reasons why an increase in the pressure drop results in less filter area are the compressed cake and the porosity of the filter cake. [Pg.191]

Sodium hydrosulfite is produced through the Formate process where sodium formate solution, sodium hydroxide, and liquid sulfur dioxide reacted in the presence of a recycled stream of methanol solvent. Other products are sodium sulfite, sodium bicarbonate, and carbon monoxide. In the reactor, sodium hydrosulfite is precipitated to form a slurry of sodium hydrosulfite in the solution of methanol, methyl formate, and other coproducts. The mixture is sent to a pressurized filter system to recover sodium hydrosulfite crystals that are dried in a steam-heated rotary drier before being packaged. Heat supply in this process is highly monitored in order not to decompose sodium hydrosulfite to sulfite. Purging is periodically carried out on the recycle stream, particularly those involving methanol, to avoid excessive buildup of impurities. Also, vaporized methanol from the drying process and liquors from the filtration process are recycled to the solvent recovery system to improve the efficiency of the plant. [Pg.944]

Whereas the liquid-solid filtration processes described so far can separate particles down to a size of around 10 xm, for smaller particles that need to be separated, a porous polymer membrane can be used. This process, known as microfiltration, retains particles down to a size of around 0.05. im. A pressure difference across the membrane of 0.5 to 4 bar is used. The two most common practical arrangements are spiral wound and hollow fiber. In the spiral wound arrangement, flat membrane sheets separated by spacers for the flow of feed and filtrate are wound into a spiral and inserted in a pressure vessel. Hollow... [Pg.151]

Microfiltration. Microfiltration is a pressure-driven membrane filtration process and has already been discussed in Chapter 8 for the separation of heterogeneous mixtures. Microfiltration retains particles down to a size of around 0.05 xm. Salts and large molecules pass through the membrane but particles of the size of bacteria and fat globules are rejected. A pressure difference of 0.5 to 4 bar is used across the membrane. Typical applications include ... [Pg.198]

In many types of processes such as batch constant-pressure filtration or fixed-bed ion exchange, the production rate decreases as a function of time. At some optimal time /opt, production is terminated (at P°pt) and the equipment is cleaned. Figure E4.12a illustrates the cumulative throughput P(t) as a function of time t for such a process. For one cycle of production and cleaning, the overall production rate is... [Pg.140]


See other pages where Pressure filtration, 222 process is mentioned: [Pg.66]    [Pg.395]    [Pg.16]    [Pg.107]    [Pg.159]    [Pg.141]    [Pg.142]    [Pg.404]    [Pg.194]    [Pg.399]    [Pg.405]    [Pg.405]    [Pg.150]    [Pg.1744]    [Pg.502]    [Pg.360]    [Pg.380]    [Pg.385]    [Pg.77]    [Pg.355]    [Pg.153]    [Pg.91]    [Pg.113]    [Pg.45]    [Pg.12]    [Pg.242]    [Pg.159]    [Pg.91]    [Pg.382]    [Pg.496]    [Pg.457]    [Pg.458]    [Pg.284]    [Pg.623]    [Pg.406]   


SEARCH



Filtration processes

Pressure filtration

Pressure process

Pressures processing

Processing filtration

© 2024 chempedia.info