Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pressure accuracy

Function ond Casualty Tests of Small Arms Ammunition. The purpose of these tests is to ascertain by firing in weapons of representative types whether the ammunition functions satisfactorily from the point of view of safety. Ammunition may be ballistically satisfactory, that is it may comply with individnal performance specifications, such as velocity, pressure, accuracy, penetration, etc, yet be unfit for use in the field because of undesirable characteristics which jeopardize the safery of weapons... [Pg.621]

Figure 11-11 can be used to estimate values of oil compressibility at pressures above the bubble point.6 This is the best available correlation considering both accuracy and ease of use. The results are generally low, by as much as 50 percent at high pressures. Accuracy is improved as bubble-point pressure is approached. [Pg.326]

FIGURE 5.8 Incipient pressure accuracy (absolute) for uninhibited hydrate data for five programs. [Pg.292]

The criteria used to judge the performance of a low-pressure pump include compositional accuracy, ripple, flow accuracy, and pressure accuracy. Compositional accuracy is tested by following the American Society for Testing and Materials (ASTM) procedure E-19.09.07.5 In this procedure, two bottles of eluent are used, one containing 100% methanol (eluent A) and the other containing methanol with a low concentration of acetone... [Pg.81]

Pressure Accuracy, Flow Accuracy, Flow Precision... [Pg.378]

Pressure accuracy 10 bar (pump display minus pressure gauge display). [Pg.378]

Carbon Monoxide (a) 1-100 ppm reformate pre-stack sensor Operational tern perature <150°C Response time 0.1-1 sec Gas environment high-humidity reformer/partial oxidation gas H23O-75%, CO2, CO, N2, H2O at 1-3 atm total pressure Accuracy 1-10% full scale... [Pg.633]

There has not been any prior analytical investigation of the arterial stiffening theory of pseudohypertension. The low arterial comphance theory is tested in this chapter via a mathematical model of oscillometric blood pressure measurement. The computational model will be used to evaluate measurement error introduced by arterial disease or alterations in arterial mechanics in general. Once these errors are established, the model will then be used to investigate the means by which automated blood pressure monitor may detect the occurrence of pseudo-hypertension or provide a correction method by which blood pressure accuracy is unproved even in the presence of arterial disease. [Pg.198]

To develop the experimental model (stiff artery theory), the arterial mechanics was completely modeled by Equation 12.1. The parameters of this equation represent the artery stiffness over varied ranges of pressure. Because it was not fully understood how the arterial mechanics and its pressure area function change with disease, the approach taken here was to perform an evaluation of parametric sensitivity. The mechanical parameters a, b, c, and d were varied to detect their influence on blood pressure accuracy. The results of the model for control and experimental conditions are provided below. [Pg.200]

This test should be considered optional, as long as pressure indications are precise and accurate. Verification of the pressure accuracy relates to a null indication when the sensor is isolated from the system (usually the damper incorporating the pressure transducer is removed from the LC configuration) and the indication of a true value when a restriction is placed within the system instead of the column, generating a known pressure drop for a specified flow rate and a given density of the mobile phase. [Pg.1958]

In Equation (24), a is the estimated standard deviation for each of the measured variables, i.e. pressure, temperature, and liquid-phase and vapor-phase compositions. The values assigned to a determine the relative weighting between the tieline data and the vapor-liquid equilibrium data this weighting determines how well the ternary system is represented. This weighting depends first, on the estimated accuracy of the ternary data, relative to that of the binary vapor-liquid data and second, on how remote the temperature of the binary data is from that of the ternary data and finally, on how important in a design the liquid-liquid equilibria are relative to the vapor-liquid equilibria. Typical values which we use in data reduction are Op = 1 mm Hg, = 0.05°C, = 0.001, and = 0.003... [Pg.68]

Appendix C-6 gives parameters for all the condensable binary systems we have here investigated literature references are also given for experimental data. Parameters given are for each set of data analyzed they often reflect in temperature (or pressure) range, number of data points, and experimental accuracy. Best calculated results are usually obtained when the parameters are obtained from experimental data at conditions of temperature, pressure, and composition close to those where the calculations are performed. However, sometimes, if the experimental data at these conditions are of low quality, better calculated results may be obtained with parameters obtained from good experimental data measured at other conditions. [Pg.144]

Liquid viscosity is one of the most difficult properties to calculate with accuracy, yet it has an important role in the calculation of heat transfer coefficients and pressure drop. No single method is satisfactory for all temperature and viscosity ranges. We will distinguish three cases for pure hydrocarbons and petroleum fractions ... [Pg.126]

The average accuracy of the Lee and Kesler model is much better than that of all cubic equations for pressures higher than 40 bar, as well as those around the critical point. [Pg.138]

The Lee and Kesler method for calculating densities is given in article 4.3.1.1 its average accuracy is about 1%, when the pressure is less than 100 bar. [Pg.138]

The error of this method is about 10% at atmospheric pressure. The accuracy becomes lower as the pressure increases. [Pg.147]

Utilization of equations of state derived from the Van der Waals model has led to spectacular progress in the accuracy of calculations at medium and high pressure. [Pg.152]

Before the performance of the loading we have to apply 5 up to 12 sensors, according their size, on the cylindrical part of the drums and after a short check of the required sensitivity and the wave propagation the pneumatic pressure test monitored by AE can be performed. The selection of the sensors and their positions was performed earlier in pre-tests under the postulate, that the complete cylinder can be tested with the same sensitivity, reliability and that furthermore the localisation accuracy of defects in the on-line- and the post analysis is sufficient for the required purpose. For the flat eovers, which will be tested by specific sensors, the geometrical shape is so complicated, that we perform in this case only a defect determination with a kind of zone-location. [Pg.32]

The specific test was made into a specialized bunker of one partner of the CIAPES program. All the vessel was covered by AE sensors to locate witli accuracy AE sources. The corrosion defect was situated on the bottom of the vessel. The service pressure of the vessel was 8 bars, so the vessel was first submitted to a proof test at 12 bars. During this test, the pressure was increased with load holds in order to verify the assessment criteria. After the first hold at 4 bars, a cluster was located at the position of the defect. The number of events located in this cluster increased during all the test (figure 1). [Pg.54]

An experimental activity on the stress measurement of a pressure vessel using the SPATE technique was carried out. It was demontrated that this approach allows to define the distribution of stress level on the vessel surface with a quite good accuracy. The most significant advantage in using this technique rather than others is to provide a true fine map of stresses in a short time even if a preliminary meticolous calibration of the equipment has to be performed. [Pg.413]

The maximum bubble pressure method is good to a few tenths percent accuracy, does not depend on contact angle (except insofar as to whether the inner or outer radius of the tube is to be used), and requires only an approximate knowledge of the density of the liquid (if twin tubes are used), and the measurements can be made rapidly. The method is also amenable to remote operation and can be used to measure surface tensions of not easily accessible liquids such as molten metals [29]. [Pg.18]

Equilibrium constants for protein-small molecule association usually are easily measured with good accuracy it is normal for standard free energies to be known to within 0.5 kcal/mol. Standard conditions define temperature, pressure and unit concentration of each of the three reacting species. It is to be expected that the standard free energy difference depends on temperature, pressure and solvent composition AA°a also depends on an arbitrary choice of standard unit concentrations. [Pg.130]

A volumetric technique is generally to be preferred especially when reasonable accuracy is required in the region of high relative pressure, as in... [Pg.283]

The first stage in the interpretation of a physisorption isotherm is to identify the isotherm type and hence the nature of the adsorption process(es) monolayer-multilayer adsorption, capillary condensation or micropore filling. If the isotherm exhibits low-pressure hysteresis (i.e. at p/p° < 0 4, with nitrogen at 77 K) the technique should be checked to establish the degree of accuracy and reproducibility of the measurements. In certain cases it is possible to relate the hysteresis loop to the morphology of the adsorbent (e.g. a Type B loop can be associated with slit-shaped pores or platey particles). [Pg.285]


See other pages where Pressure accuracy is mentioned: [Pg.59]    [Pg.317]    [Pg.140]    [Pg.633]    [Pg.633]    [Pg.3523]    [Pg.459]    [Pg.59]    [Pg.317]    [Pg.140]    [Pg.633]    [Pg.633]    [Pg.3523]    [Pg.459]    [Pg.141]    [Pg.233]    [Pg.226]    [Pg.30]    [Pg.115]    [Pg.476]    [Pg.1219]    [Pg.1222]    [Pg.1910]    [Pg.1958]    [Pg.95]    [Pg.139]    [Pg.194]    [Pg.478]    [Pg.97]    [Pg.133]    [Pg.291]   
See also in sourсe #XX -- [ Pg.81 , Pg.83 ]




SEARCH



Accuracy high pressure sensors

Accuracy pressure sensors

Blood pressure accuracy

Thermometer, accuracy pressure

Thermometer, accuracy vapor-pressure

© 2024 chempedia.info