Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Preparation resonance

If a molecule decays in a mode-specific way, the assessment of the accuracy of classical calculations is much more complicated and depends, we believe, sensitively on the initially prepared resonance state. Considering a micro-canonical ensemble certainly will not be appropriate. The initial conditions of the ensemble of trajectories should mimic the quantum mechanical distribution function of coordinates and/or momenta as closely as possible [20,385]. The gross features of the final state distributions, e.g. the peaking of the CO vibrational distribution in the dissociation of HCO close to the maximum allowed state (Fig. 36), may be qualitatively reproduced. However, more subtle structures are unlikely to be described well, because they often reflect details of the quantum wave function (reflection principle [20]). More work to explore this question is certainly needed. [Pg.227]

Stimulated emission pumping (SEP) has been used to prepare resonance states for HFCO near the dissociation threshold for HF + CO formation (Choi and Moore 1991, 1992). A difference between the H2CO and HFCO potential energy surfaces, is that the HFCO —> HF + CO dissociation threshold has been estimated as 49 4 kcal/mol and is significantly smaller than the H2CO H2 + CO threshold of —85 kcal/mol. [Pg.297]

Thus, the initially prepared resonance state subjected to a coupling scheme represented by Figure 2.1 decays exponentially by radiative and nonradiative transitions on the timescale that is appreciably shorter than the recurrence time Tree ftQ-... [Pg.136]

The methods diseussed so far, fluoreseenee upeonversion, the various pump-probe speetroseopies, and the polarized variations for the measurement of anisotropy, are essentially eonventional speetroseopies adapted to the femtoseeond regime. At the simplest level of interpretation, the infonnation eontent of these eonventional time-resolved methods pertains to populations in resonantly prepared or probed states. As applied to ehemieal kineties, for most slow reaetions (on the ten pieoseeond and longer time seales), populations adequately speeify the position of the reaetion eoordinate intemiediates and produets show up as time-delayed speetral entities, and assignment of the transient speetra to ehemieal stnietures follows, in most oases, the same prinoiples used in speotrosoopio experiments perfomied with oontinuous wave or nanoseoond pulsed lasers. [Pg.1984]

With tlie development of femtosecond laser teclmology it has become possible to observe in resonance energy transfer some apparent manifestations of tire coupling between nuclear and electronic motions. For example in photosyntlietic preparations such as light-harvesting antennae and reaction centres [32, 46, 47 and 49] such observations are believed to result eitlier from oscillations between tire coupled excitonic levels of dimers (generally multimers), or tire nuclear motions of tire cliromophores. This is a subject tliat is still very much open to debate, and for extensive discussion we refer tire reader for example to [46, 47, 50, 51 and 55]. A simplified view of tire subject can nonetlieless be obtained from tire following semiclassical picture. [Pg.3027]

Monomer (Section 6 21) The simplest stable molecule from which a particular polymer may be prepared Monosaccharide (Section 25 1) A carbohydrate that cannot be hydrolyzed further to yield a simpler carbohydrate Monosubstituted alkene (Section 5 6) An alkene of the type RCH=CH2 in which there is only one carbon directly bonded to the carbons of the double bond Multiplicity (Section 13 7) The number of peaks into which a signal IS split in nuclear magnetic resonance spectroscopy Signals are described as singlets doublets triplets and so on according to the number of peaks into which they are split... [Pg.1289]

It is proposed to polymerize the vinyl group of the hemin molecule with other vinyl comonomers to prepare model compounds to be used in hemoglobin research. Considering hemin and styrene to be species 1 and 2, respectively, use the resonance concept to rank the reactivity ratios rj and X2. [Pg.443]

Copolymers of VF and a wide variety of other monomers have been prepared (6,41—48). The high energy of the propagating vinyl fluoride radical strongly influences the course of these polymerizations. VF incorporates well with other monomers that do not produce stable free radicals, such as ethylene and vinyl acetate, but is sparingly incorporated with more stable radicals such as acrylonitrile [107-13-1] and vinyl chloride. An Alfrey-Price value of 0.010 0.005 and an e value of 0.8 0.2 have been determined (49). The low value of is consistent with titde resonance stability and the e value is suggestive of an electron-rich monomer. [Pg.379]

Spectrometric Analysis. Remarkable developments ia mass spectrometry (ms) and nuclear magnetic resonance methods (nmr), eg, secondary ion mass spectrometry (sims), plasma desorption (pd), thermospray (tsp), two or three dimensional nmr, high resolution nmr of soHds, give useful stmcture analysis information (131). Because nmr analysis of or N-labeled amino acids enables determiaation of amino acids without isolation from organic samples, and without destroyiag the sample, amino acid metaboHsm can be dynamically analy2ed (132). Proteia metaboHsm and biosynthesis of many important metaboUtes have been studied by this method. Preparative methods for labeled compounds have been reviewed (133). [Pg.285]

Hydroxypyrroles. Pyrroles with nitrogen-substituted side chains containing hydroxyl groups are best prepared by the Paal-Knorr cyclization. Pyrroles with hydroxyl groups on carbon side chains can be made by reduction of the appropriate carbonyl compound with hydrides, by Grignard synthesis, or by iasertion of ethylene oxide or formaldehyde. For example, pyrrole plus formaldehyde gives 2-hydroxymethylpyrrole [27472-36-2] (24). The hydroxymethylpyrroles do not act as normal primary alcohols because of resonance stabilization of carbonium ions formed by loss of water. [Pg.358]

The addition product, C QHgNa, called naphthalenesodium or sodium naphthalene complex, may be regarded as a resonance hybrid. The ether is more than just a solvent that promotes the reaction. StabiUty of the complex depends on the presence of the ether, and sodium can be Hberated by evaporating the ether or by dilution using an indifferent solvent, such as ethyl ether. A number of ether-type solvents are effective in complex preparation, such as methyl ethyl ether, ethylene glycol dimethyl ether, dioxane, and THF. Trimethyl amine also promotes complex formation. This reaction proceeds with all alkah metals. Other aromatic compounds, eg, diphenyl, anthracene, and phenanthrene, also form sodium complexes (16,20). [Pg.163]

Sucralfate [54182-58-0] an aluminum salt of sucrose octasulfate, is used as an antacid and antiulcer medication (59). Bis- and tris-platinum complexes of sucrose show promise as antitumor agents (60). Sucrose monoesters are used in some pharmaceutical preparations (21). A sucrose polyester is under evaluation as a contrast agent for magnetic resonance imaging (mri) (61). Oral adrninistration of this substance opacifies the gastrointestinal tract and eliminates the need for purging prior to mri. [Pg.6]


See other pages where Preparation resonance is mentioned: [Pg.60]    [Pg.247]    [Pg.60]    [Pg.247]    [Pg.239]    [Pg.1185]    [Pg.1185]    [Pg.1200]    [Pg.1202]    [Pg.1210]    [Pg.1463]    [Pg.1581]    [Pg.1693]    [Pg.1976]    [Pg.1985]    [Pg.1986]    [Pg.1989]    [Pg.1990]    [Pg.2496]    [Pg.126]    [Pg.36]    [Pg.78]    [Pg.208]    [Pg.263]    [Pg.206]    [Pg.182]    [Pg.374]    [Pg.388]    [Pg.332]    [Pg.353]    [Pg.354]    [Pg.521]   
See also in sourсe #XX -- [ Pg.4 , Pg.19 ]




SEARCH



Electron spin resonance studies preparation process

Nuclear magnetic resonance protein preparation

Nuclear magnetic resonance sample preparation

Nuclear magnetic resonance spectroscopy sample preparation

Preparation of Dextran-Based Macromolecular Chelates for Magnetic Resonance Angiography

Sample preparation resonance

Sample preparation solid-state nuclear magnetic resonance

© 2024 chempedia.info