Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic optical spectrometry precision

Several instmmental methods are available for quantitative estimation of from moderate to trace amounts of cerium in other materials. X-ray fluorescence is widely available, versatile, and suitable for deterrninations of Ce, and any other Ln, at percent levels and lower in minerals and purer materials. The uv-excited visible luminescence of cerium is characteristic and can be used to estimate Ce content, at ppm levels, in a nonluminescing host. X-ray excited optical luminescence (15), a technique especially appropriate for Ln elements including cerium, rehes on emissions in the visible, and also measures ppm values. Atomic emission spectrometry is appHcable to most lanthanides, including Ce (16). The precise lines used for quantitative measurement must be chosen with care, but once set-up the technique is suitable for routine analyses. [Pg.368]

This section starts with a discussion of selectivity for the most extended analytical atomic techniques based on optical spectrometry. Then, aspects such as detection limits (DLs), linear ranges, precision, versatility and sample throughput will be presented. The section ends with a brief comparison of the... [Pg.16]

Today, analyses of bulk fossil chemistry are largely conducted by inductively coupled plasma (ICP) atomic emission spectrometry (AES), ICP mass spectrometry (MS) or ICP optical emission spectrometry (OES) techniques (e.g. Rosenthal et al. 1999 DeVilliers et al. 2002 Green et al. 2003). These techniques permit rapid and precise (c. 1% for many elements) measurement of a number of chemical constituents simultaneously. ICP-MS offers higher sensitivities than AES and OES, enabling measurement of more elements and smaller sample sizes. [Pg.22]

As mentioned earlier, optical atomic spectroscopy is only able to analyze solution sample. As a result, ceramic powders to be tested should be made into solution. The solution is then broken into line droplets and vaporized into individual atoms by heating, which is the step critical to the precision and accuracy of the analysis. Flame is generally used to vaporize the solution, which is therefore also known as flame atomic absorption spectrometry or flame AA. [Pg.214]

For the analysis of ceramic powders by optical atomic specfroscopy, a portion of the powder has to be converted into individual atoms. In practice, this is achieved by dissolving the powder in a liquid to form a solution, which is then broken into fine droplets and vaporized into individual atoms by heating. The precision and accuracy of optical atomic spectroscopy are critically dependent on this step. Vaporization is most commonly achieved by introducing droplets into a flame (referred to as flame atomic absorption spectrometry or flame AA). Key problems with flame AA include incomplete dissociation of the more refractory elements (e.g., B, V, Ta, and W) in the flame and difficulties in determining elements that have resonance lines in the far ultraviolet region (e.g., P, S, and the halogens). While flame AA is rapid, the instruments are rarely automated to permit simultaneous analysis of several elements. [Pg.159]

There has been renewed interest in the method, mainly due to the availability of improved Nd YAG laser systems. In addition, different types of detectors, such as microchannel plates coupled to photodiodes and CCDs, in combination with multi-channel analyzers make it possible for an analytical line and an internal standard line to be recorded simultaneously, by which the analytical precision can be considerably improved. By optimizing the ablation conditions and the spectral observation, detection limits obtained using the laser plume as a source for atomic emission spectrometry are in the 50-100 pg/g range and RSDs are in the region of 1% as shown by the determination of Si and Mg in low-alloyed steels [255, 259]. This necessitates the use of slightly reduced pressure, so that the atom vapor cloud is no longer optically very dense and the background emission intensities become lower. In the case of laser ablation of brass samples at normal pressure and direct... [Pg.280]

BeryUium aUoys ate usuaUy analyzed by optical emission or atomic absorption spectrophotometry. Low voltage spark emission spectrometry is used for the analysis of most copper-beryUium aUoys. Spectral interferences, other inter-element effects, metaUurgical effects, and sample inhomogeneity can degrade accuracy and precision and must be considered when constmcting a method (17). [Pg.68]

Since the mid-1960s, a variety of analytical chemistry techniques have been used to characterize obsidian sources and artifacts for provenance research (4, 32-36). The most common of these methods include optical emission spectroscopy (OES), atomic absorption spectroscopy (AAS), particle-induced X-ray emission spectroscopy (PIXE), inductively coupled plasma-mass spectrometry (ICP-MS), laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), X-ray fluorescence spectroscopy (XRF), and neutron activation analysis (NAA). When selecting a method of analysis for obsidian, one must consider accuracy, precision, cost, promptness of results, existence of comparative data, and availability. Most of the above-mentioned techniques are capable of determining a number of elements, but some of the methods are more labor-intensive, more destructive, and less precise than others. The two methods with the longest and most successful histoty of success for obsidian provenance research are XRF and NAA. [Pg.527]

In the last 20 years atomic spectroscopy has made great strides, particularly with the introduction of new improved optic designs and detection methods. These improvements have led to superior resolution of the wavelengths of the excited atoms and detection techniques measuring lower levels of metals with ease. After a slow and problematic start, inductively coupled plasma optical emission spectrometry (ICP-OES) has become an established technique in most laboratories analysing a wide range of sample matrices reporting accurate and precise results. [Pg.274]

Each experiment was accortqjanied the determination of Pd in solution after hot filtration of the solid catalyst at the end of the reaction. Because simple Atomic Absorption Spectroscopy (AAS) was found to not be precise enough for the palladium analysis in this concentration range (detection limit too high.) ICP-OES and/or ICP-MS (Inductively Coupled Plasma - Optical Emission Spectroscopy or Inductively Coupled Plasma - Mass Spectrometry) were applied. To first approximation, the Pd leaching could not be correlated with the properties of the twelve different Pd/C catalysts described above ((1) Correlation of catalyst structure and activity.) There is, however, a strong correlation with the reaction parameters as described below. [Pg.391]

Various techniques can be used for quantitative analysis of chemical composition, including (i) optical atomic spectroscopy (atomic absorption, atomic emission, and atomic fluorescence), (ii) X-ray fluorescence spectroscopy, (iii) mass spectrometry, (iv) electrochemistry, and (v) nuclear and radioisotope analysis [41]. Among these, optical atomic spectroscopy, involving atomic absorption (AA) or atomic emission (AE), has been the most widely used for chemical analysis of ceramic powders. It can be used to determine the contents of both major and minor elements, as well as trace elements, because of its high precision and low detection limits. [Pg.212]

This article provides some general remarks on detection requirements for FIA and related techniques and outlines the basic features of the most commonly used detection principles, including optical methods (namely, ultraviolet (UV)-visible spectrophotometry, spectrofluorimetry, chemiluminescence (CL), infrared (IR) spectroscopy, and atomic absorption/emission spectrometry) and electrochemical techniques such as potentiometry, amperometry, voltammetry, and stripping analysis methods. Very few flowing stream applications involve other detection techniques. In this respect, measurement of physical properties such as the refractive index, surface tension, and optical rotation, as well as the a-, //-, or y-emission of radionuclides, should be underlined. Piezoelectric quartz crystal detectors, thermal lens spectroscopy, photoacoustic spectroscopy, surface-enhanced Raman spectroscopy, and conductometric detection have also been coupled to flow systems, with notable advantages in terms of automation, precision, and sampling rate in comparison with the manual counterparts. [Pg.1275]

The analytical accuracy of methods can only be discussed in view of the complete analytical procedure applied. It is necessary to tune sample preparation and trace-matrix separations to the requirements of the analytical results in terms of accuracy, power of detection, precision, cost, number of elements, and, increasingly, the species to be determined. However, the intrinsic sensitivity of the different determination methods to matrix interference remains important. In optical emission and mass spectrometry, spectral interference remains an important limitation to the achievable analytical accuracy. In atomic emission, this applies especially to the heavier elements, as they have the more complex atomic spectra. Especially when they are present as the... [Pg.720]

Analytical performance can mean different things to different people. The major reason that the trace element community was attracted to ICP-MS almost 20 years ago was its extremely low mnltielement DLs. Other multielement techniques, such as inductively coupled plasma optical anission spectrometry (ICP-OES), offered very high throughput but just could not get down to ultratrace levels. Eveu though electrothermal atomization (ETA) offered much better detection capability than ICP-OES, it did not offer the sample thronghput capability that many applications demanded. In addition, ETA was predominantly a single-element technique and so was impractical for carrying out rapid multielement analysis. These limitations quickly led to the commercialization and acceptance of ICP-MS as a tool for rapid ultratrace element analysis. However, there are certain areas where ICP-MS is known to have weaknesses. For example, dissolved solids for most sample matrices must be kept below 0.2%, otherwise this can lead to serious drift problems and poor precision. [Pg.302]

Because of differences in ecotoxicity between the different mercury species and as many mercury species are volatile or can easily be transformed into volatile compounds, they can readily be separated by gas chromatography and detected by MIP optical emission spectrometry for speciation. Freeh et al. [520] compared the Bee-nakker microwave-induced plasma (MIP) and a furnace atomization plasma excitation spectrometry (FAPES) source for the determination of derivatized mercury species in natural gas condensate with coupling to high-resolution GC for sample introduction and monitoring the emission of the 253.6 nm mercury hne. The precision of replicate measurements for dimethyl-, methylbutyl-, and dibutyhnercury... [Pg.258]

For the determination of isotope ratios, the precision of TOF-ICP-MS has been studied in a preliminary comparison with other mass spectrometer systems [643]. Typical isotope ratio precisions of 0.05% were obtained, thus overtaking sector field mass spectrometry with sequential detection, for which values of 0.1-0.3% for Cu/ Cu in Antarctic snow samples have been reported [644]. Similar results were obtained by Becker et al. [645] for Mg and Ca in biological samples (0.4-0.5%). In principle, the features of TOF-ICP-MS may be superior to those of sequential sector field or quadrupole mass spectrometry however, true parallel detection of the signals, as is possible with multi-collector systems or array detector mass spectrometry, may be the definitive solution, as shown by Hirata et al. [646]. Here, the use of detectors which allow true parallel measurement of the signals within the relevant mass range, just as the CCDs do for optical atomic spectrometry, may be the ultimate solution and bring about the final breakthrough for ICP-MS isotope ratio measurements as is required in isotope dilution mass spectrometry. [Pg.299]


See other pages where Atomic optical spectrometry precision is mentioned: [Pg.252]    [Pg.1242]    [Pg.1573]    [Pg.380]    [Pg.167]    [Pg.2459]    [Pg.252]    [Pg.428]    [Pg.162]    [Pg.50]    [Pg.52]    [Pg.57]    [Pg.52]    [Pg.57]    [Pg.6083]    [Pg.6]    [Pg.6082]    [Pg.328]    [Pg.327]    [Pg.2452]    [Pg.2453]    [Pg.5181]    [Pg.516]    [Pg.157]    [Pg.704]    [Pg.281]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Atom optics

Optical spectrometry

Precision atomic optical

Precision optical

Precision spectrometry

© 2024 chempedia.info