Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pp parameter

Fig. 8.1. Response to pulsatile stimulation by extracellular cAMP in the model for cAMP synthesis based on receptor desensitization. Equations (5.16) of the two-variable model are integrated in the case where periodic stimulation by extracellular cAMP (y) takes the form of a square wave. In (a), the stimulus consists in raising y from 0 to 10 for 5 min at 5 min intervals. In (b), the same pulse is applied at 1 min intervals. In each case the variation of intracellular cAMP (j8) is represented, as well as the variation of the total fraction of active receptor (pp). Parameter values are those of fig. 5.38 (Martiel Goldbeter, 1987a). Fig. 8.1. Response to pulsatile stimulation by extracellular cAMP in the model for cAMP synthesis based on receptor desensitization. Equations (5.16) of the two-variable model are integrated in the case where periodic stimulation by extracellular cAMP (y) takes the form of a square wave. In (a), the stimulus consists in raising y from 0 to 10 for 5 min at 5 min intervals. In (b), the same pulse is applied at 1 min intervals. In each case the variation of intracellular cAMP (j8) is represented, as well as the variation of the total fraction of active receptor (pp). Parameter values are those of fig. 5.38 (Martiel Goldbeter, 1987a).
When comparing these two equations we see that Pp-parameter numerically correlates with the value of T-fimction and is generally proportional to it Taking into accoimtthe broad practical opportunities... [Pg.139]

Since Pp-parameters like P-fimction have wave properties, the superposition principles should be fulfilled for them, defining the linear character of the equations of adding and changing P-parameter. [Pg.139]

N.P. Zhuk and D.O. Batrakov, Inverse scattering problem in the polarization parameters domain for isotropic layered media solution via Newfon-Kantorovich iterative technique, 1994, J. Electromagn. Waves AppL, vol. 8, No. 6, pp. 759-779. [Pg.130]

Smith MAH, Rinsland C P and Fridovich B 1985 Intensities and collision broadening parameters from infrared spectra Molecular Spectroscopy Modem Research Volume Hied K N Rao (New York Academic) pp 118-19... [Pg.3015]

M. Jalaie, K. B. Lipkowitz, Published force field parameters for molecular mechanics, molecular dynamics, and Monte Carlo simulations, in Reviews in Computational Chemistry, Vol. 14, K.B. Lipkowitz, D. B. Boyd (Eds.), Wiley-VCH, New York, 2000, pp. 441-486. [Pg.356]

The geometry dependenee of the Pp y parameters is often approximated by assuming that Pj y is proportional to the overlap Sp y between the eorresponding atomie orbitals ... [Pg.197]

If the experimental values P and w are closely reproduced by the correlating equation for g, then these residues, evaluated at the experimental values of X, scatter about zero. This is the result obtained when the data are thermodynamically consistent. When they are not, these residuals do not scatter about zero, and the correlation for g does not properly reproduce the experimental values P and y . Such a correlation is, in fact, unnecessarily divergent. An alternative is to process just the P-X data this is possible because the P-x -y data set includes more information than necessary. Assuming that the correlating equation is appropriate to the data, one merely searches for values of the parameters Ot, b, and so on, that yield pressures by Eq. (4-295) that are as close as possible to the measured values. The usual procedure is to minimize the sum of squares of the residuals 6P. Known as Barkers method Austral. ]. Chem., 6, pp. 207-210 [1953]), it provides the best possible fit of the experimental pressures. When the experimental data do not satisfy the Gibbs/Duhem equation, it cannot precisely represent the experimental y values however, it provides a better fit than does the procedure that minimizes the sum of the squares of the 6g residuals. [Pg.537]

This information allows prediction of X T.E at 323.15 K and at the higher temperatures, 372.8, 397.7, and 422.6 K, for which measured X T.E values are given by Wilsak, et al. (Fluid Phase Equilibria, 28, pp. 13-37 [1986]). Values of In yX and hence of the Margules parameters at the higher temperatures are given by Eq. (4-325) with Cf = 0. The pure-species vapor pressures in all cases are the measured values reported with the data sets. Res lilts of these calculations are displayed in Table 4-1, where the parentheses enclose values from the gamma/ phi approach as reported in the papers cited. [Pg.540]

For most LLE applications, the effect of pressure on the Yi < an be ignored, and thus Eq. (4-327) constitutes a set of N equations relating equilibrium compositions to each other and to temperature. For a given temperature, solution of these equations requires a single expression for the composition dependence of suitable for both liquid phases. Not all expressions for suffice, even in principle, because some cannot represent liquid/liquid phase splitting. The UNIQUAC equation is suitable, and therefore prediction is possible by the UNIFAC method. A special table of parameters for LLE calculations is given by Magnussen, et al. (Jnd E/ig Chem Process Des Dev, 20, pp. 331-339 [1981]). [Pg.541]

Hofmann, Tndustrial process kinetics and parameter estimation , in ACS Advances in Chemlstiy, 109, 519-534 (1972) "Kinetic data analysis and parameter estimation , in de Lasa, ed.. Chemical Reactor De.sign and Technology, Martinus Nijhoff, 1986, pp. 69-105. [Pg.708]

Two complementai y reviews of this subject are by Shah et al. AIChE Journal, 28, 353-379 [1982]) and Deckwer (in de Lasa, ed.. Chemical Reactor Design andTechnology, Martinus Nijhoff, 1985, pp. 411-461). Useful comments are made by Doraiswamy and Sharma (Heterogeneous Reactions, Wiley, 1984). Charpentier (in Gianetto and Silveston, eds.. Multiphase Chemical Reactors, Hemisphere, 1986, pp. 104—151) emphasizes parameters of trickle bed and stirred tank reactors. Recommendations based on the literature are made for several design parameters namely, bubble diameter and velocity of rise, gas holdup, interfacial area, mass-transfer coefficients k a and /cl but not /cg, axial liquid-phase dispersion coefficient, and heat-transfer coefficient to the wall. The effect of vessel diameter on these parameters is insignificant when D > 0.15 m (0.49 ft), except for the dispersion coefficient. Application of these correlations is to (1) chlorination of toluene in the presence of FeCl,3 catalyst, (2) absorption of SO9 in aqueous potassium carbonate with arsenite catalyst, and (3) reaction of butene with sulfuric acid to butanol. [Pg.2115]

K.P. Staudhammer, Shock Wave Effects and Metallurgical Parameters, in IMPACT 1987 (edited by C.Y. Chiem, H.-.D. Kunze, and L.W. Meyer), Duetsche Gesellschaft fur Metallkunde, Oberursel, West Germany, 1988, 93 pp. [Pg.213]

M Schlenkrich, J Bnckmann, AD MacKerell Jr, M Karplus. In KM Merz, B Roux, eds. Empirical Potential Energy Eunction for Phospholipids Criteria for Parameter Optimization and Applications. Boston Birkhaiiser, 1996, pp 31-81. [Pg.36]

GR Marshall, CD Barry, HE Bosshard, RA Dammkoehler, DA Dunn. The conformational parameter m drug design The active analog approach. ACS Symp Ser 112 205-226, 1979. JL Fauchere, ed. QSAR Quantitative Structure-Activity Relationships m Drug Design. New York Alan R Liss, 1989, pp 177-181. [Pg.366]

Brown, L.E., Axial Flow Compressor and Turbine Loss Coefficients A Comparison of Several Parameters, Journal of Engineering for Power, ASME Transactions 94A, pp. 193-201, 1972. [Pg.368]

Whereas Freeman and Lewis reported the first comprehensive analysis of hydroxymethylation of phenol, they were not the last to study this system. A number of reports issued since their work have confirmed the general trends that they discovered while differing in some of the relative rates observed [80,84-99], Gardziella et al. have summarized a number of these reports ([18], pp. 29-35). In addition to providing new data under a variety of conditions, the other studies have improved on the accuracy of Freeman and Lewis, provided activation parameters, and added new methodologies for measuring product development [97-99],... [Pg.901]

Aird, R. J. Practical Estimation of Reliability Parameters for Process Equipment. Reliability Engineering, Vol. 7, 1984, pp. 314-318. [Pg.235]

Bucaram, S. M. and B. J. Yeary. Data Gathering System to Optimize Production Operations A 14-Year Overview. i. Pet. Technol., Vol. 39, No. 4, April 1987, pp. 457-462. Capxrbianci, S. The Problem of Data Homogenization in Reliability Data Banks A Scheme of Classifications. Paper 11.B.5, ANS/ENS Topical Meeting on PRA, September 1981. Colombo, A. G. and R. J. Jaarsma. Combination of Reliability Parameters from Different Data Sources. Proceedings of the 4th EuReDatA Conference, 1983. [Pg.235]

The procedure, in analyzing kinetic data by numerical integration, is to postulate a reasonable kinetic scheme, write the differential rate equations, assume estimates for the rate constants, and then to carry out the integration for comparison of the calculated concentration-time curves with the experimental results. The parameters (rate constants) are adjusted to achieve an acceptable fit to the data. Carpen-(ej-48. pp. 76-81 some numerical calculations. Farrow and Edelson and Porter... [Pg.109]

Strictly speaking Eq. (8-51) should be applied only to reacting systems whose molecular properties are consistent with the assumptions of regular solution theory. This essentially restricts the approach to the reactions of nonpolar species in nonpolar solvents. Even in these systems, which we recall do not exhibit a marked solvent dependence, correlations with tend to be poor. - pp Nevertheless, the solubility parameter and its partitioning into dispersion, polar, and H-bonding components provide some insight into solvent behavior that is different from the information given by other properties such as those in Tables 8-2 and 8-3. [Pg.418]

Weis [85AHC(38)1, pp. 70-73] has also studied the kinetics of 1,4-dihydro to 1,6-dihydro transformation quantitatively using H NMR line-shape analysis. The results indicated that two mechanisms (monomolecular and bimolecular reactions) are involved in the process, for which all the kinetic parameters were calculated. [Pg.272]

Coran and Patel [33] selected a series of TPEs based on different rubbers and thermoplastics. Three types of rubbers EPDM, ethylene vinyl acetate (EVA), and nitrile (NBR) were selected and the plastics include PP, PS, styrene acrylonitrile (SAN), and PA. It was shown that the ultimate mechanical properties such as stress at break, elongation, and the elastic recovery of these dynamically cured blends increased with the similarity of the rubber and plastic in respect to the critical surface tension for wetting and with the crystallinity of the plastic phase. Critical chain length of the rubber molecule, crystallinity of the hard phase (plastic), and the surface energy are a few of the parameters used in the analysis. Better results are obtained with a crystalline plastic material when the entanglement molecular length of the... [Pg.641]

Juba, M. R., A Review of Mechanistic Considerations and Process Design Parameters for Precipitation Polymerization, in Polymerization Reactions and Processes, ACS Symposium Series No. 104, Washington D.C., 1979, pp. 267-279. [Pg.373]


See other pages where Pp parameter is mentioned: [Pg.114]    [Pg.255]    [Pg.301]    [Pg.187]    [Pg.114]    [Pg.255]    [Pg.301]    [Pg.187]    [Pg.27]    [Pg.28]    [Pg.356]    [Pg.290]    [Pg.431]    [Pg.446]    [Pg.688]    [Pg.1390]    [Pg.1516]    [Pg.1534]    [Pg.2061]    [Pg.2282]    [Pg.378]    [Pg.380]    [Pg.53]    [Pg.295]    [Pg.177]    [Pg.237]    [Pg.86]    [Pg.272]    [Pg.112]   
See also in sourсe #XX -- [ Pg.150 , Pg.279 ]




SEARCH



Technical parameters of PP

© 2024 chempedia.info