Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Power, definitions sources

Early work in this field was conducted prior to the availability of powerful radiation sources. In 1929, E. B. Newton "vulcanized" rubber sheets with cathode-rays (16). Several studies were carried out during and immediately after world war II in order to determine the damage caused by radiation to insulators and other plastic materials intended for use in radiation fields (17, 18, 19). M. Dole reported research carried out by Rose on the effect of reactor radiation on thin films of polyethylene irradiated either in air or under vacuum (20). However, worldwide interest in the radiation chemistry of polymers arose after Arthur Charlesby showed in 1952 that polyethylene was converted by irradiation into a non-soluble and non-melting cross-linked material (21). It should be emphasized, that in 1952, the only cross-linking process practiced in industry was the "vulcanization" of rubber. The fact that polyethylene, a paraffinic (and therefore by definition a chemically "inert") polymer could react under simple irradiation and become converted into a new material with improved properties looked like a "miracle" to many outsiders and even to experts in the art. More miracles were therefore expected from radiation sources which were hastily acquired by industry in the 1950 s. [Pg.33]

Sources of pollution vary from smaU-scale businesses, such as dry cleaners and gas stations, to very large-scale operations, such as power plants and petrochemical facilities. The effluent streams of industry are particularly noticeable because of their large volumes [1]. Sources include both point-source and non-point-source pollution. Point-source pollution can be traced directly to single outlet points, such as a pipe releasing into a waterway. Non-point-source pollutants, on the other hand, such as agricultural run-off, cannot be traced to a single definite source. The emissions from both span a wide range of gas, liquid, and solid compounds. [Pg.4]

The paper presents the results from systematic comparisons of contrast and resolution obtained with different types of radiation sources on steel thicknesses from 5 to 40 mm. These results have been taken into account with the definitions of the European standard for radiographic inspection of weldments (EN 1435) that is approved since 1997. Conclusions from practical investigations on pipe line sites, in petrochcemical plants and in nuclear power stations will be discussed as well. Furthermore, the presentation will stipulate a variety of advantages obtained from the new source in terras of coUimation and radiation protection. [Pg.423]

Definition 2 is phrased in terms of knowledge-based systems rather than expert systems. No reference is made to expert human problem solvers. Definition 2 captures the sense that the representation and manipulation of knowledge is the source of such a system s power, whether or not that knowledge is dkecdy eHcited from a human expert. [Pg.530]

Establishing the physical and analytical boundaries for a QRA is also a difficult task. Even though you will provide input, the scope definition will largely be made by the QRA project team. Defining the physical boundaries is relatively straightforward, but it does force the QRA team to explicitly identify and account for interfaces that may significantly affect the QRA results. Eor example, analysts often treat a connection to a power supply (e.g., a plug) or a feed source as a physical boundary yet, loss of power or contamination of the feed must be considered in the QRA model. [Pg.27]

A mobile source of air pollution can be defined as one capable of moving from one place to another under its own power. According to this definition, an automobile is a mobile source and a portable asphalt batching plant is not. Generally, mobile sources imply transportation, but sources such as construction equipment, gasoUne-powered lawn mowers, and gasoline-powered tools are included in this category. [Pg.91]

The Subpart O standards apply to units that treat or destroy hazardous waste and which meet the definition of an incinerator. An incinerator is any enclosed device that uses controlled flame combustion and does not meet the criteria for classification as a boiler, sludge dryer, carbon regeneration unit, or industrial furnace. Typical incinerators1 2 3 include rotary kilns, liquid injectors, fixed hearth units, and fluidized bed incinerators (Table 23.1). The definition of an incinerator also includes units that meet the definition of an infrared incinerator or plasma arc incinerator. An infrared incinerator is any enclosed device that uses electric-powered resistance as a source of heat and which is not listed as an industrial furnace. A plasma arc incinerator is any enclosed device that uses a high-intensity electrical discharge as a source of heat and which is not listed as an industrial furnace. [Pg.961]

The formal definition of this quality factor, Q, is the amount of power stored in the resonator divided by the amount of power dissipated per cycle (at 9.5 GHz a cycle time is l/(9.5 x 109) 100 picoseconds). The dissipation of power is through the resonator walls as heat, in the sample as heat, and as radiation reflected out of the resonator towards the detector. The cycle time is used in the definition because the unit time of one second would be far too long for practical purposes within one second after the microwave source has been shut off, all stored power has long been dissipated away completely. [Pg.18]

Figure 17-46 shows such a performance curve for the collection of coal fly ash by a pilot-plant venturi scrubber (Raben "Use of Scrubbers for Control of Emissions from Power Boilers, United States-U.S.S.R. Symposium on Control of Fine-Particulate Emissions from Industrial Sources, San Francisco, 1974). The scatter in the data reflects not merely experimental errors but actual variations in the particle-size characteristics of the dust. Because the characteristics of an industrial dust vary with time, the scrubber performance curve necessarily must represent an average material, and the scatter in the data is frequently greater than is shown in Fig. 17-46. For best definition, the curve should cover as wide a range of contacting power as possible. Obtaining the data thus requires pilot-plant equipment with the flexibility to operate over a wide range of conditions. Because scrubber performance is not greatly affected by the size of the unit, it is feasible to conduct the tests with a unit handling no more than 170 m3/h (100 ftVmin) of gas. Figure 17-46 shows such a performance curve for the collection of coal fly ash by a pilot-plant venturi scrubber (Raben "Use of Scrubbers for Control of Emissions from Power Boilers, United States-U.S.S.R. Symposium on Control of Fine-Particulate Emissions from Industrial Sources, San Francisco, 1974). The scatter in the data reflects not merely experimental errors but actual variations in the particle-size characteristics of the dust. Because the characteristics of an industrial dust vary with time, the scrubber performance curve necessarily must represent an average material, and the scatter in the data is frequently greater than is shown in Fig. 17-46. For best definition, the curve should cover as wide a range of contacting power as possible. Obtaining the data thus requires pilot-plant equipment with the flexibility to operate over a wide range of conditions. Because scrubber performance is not greatly affected by the size of the unit, it is feasible to conduct the tests with a unit handling no more than 170 m3/h (100 ftVmin) of gas.
Similar to the applications of explosives in mining, quarrying and construction work, explosives have a definite place in agriculture. As a power source, they enable... [Pg.59]

A simple definition of a power conversion circuit is a circuit that converts a power source of a certain characteristic (e.g., 110 V AC battery voltage, spacecraft bus) into a power source with a more desirable characteristic (e.g., regulated +5V DC for digital logic, constant current sources). A wide variety of these circuits are presented in this chapter. [Pg.61]

Now, it is necessary to define a new and central term. It is called the overpotential, t. It refers to the departure of the potential of the electrode from its equilibrium value, A e. By making T negative, one can push excess electrons into the electrode and provoke a net exiting of electrons from metal to solution one can provoke the entry of electrons. Suppose we impose (using the outside power source) a shift (1)) in the electrode potential from the equilibrium value in a negative direction. The new interfacial potential is to be A< >. Then, the definition of overpotential is... [Pg.333]

Campanari S., Iora P., 2004. Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry. Journal of Power Sources 132(1/2), 113-126. [Pg.90]

The terms displacement and true power factor, are widely mentioned in power factor studies. Displacement power factor is the cosine of the angle between the fundamental voltage and current waveforms. The fundamental waveforms are by definition pure sinusoids. But, if the waveform distortion is due to harmonics (which is very often the case), the power factor angles are different than what would be for the fundamental waves alone. The presence of harmonics introduces additional phase shift between the voltage and the current. True power factor is calculated as the ratio between the total active power used in a circuit (including harmonics) and the total apparent power (including harmonics) supplied from the source ... [Pg.145]

There is not yet, however, a definite detection of diffuse gamma-ray emission from galaxy clusters. While there is a preliminary evidence of gamma-ray emission from a dozen bright, radio-active clusters which host powerful radio galaxies and Blazars and are associated to unidentified EGRET sources (Co-lafrancesco 2002), many of the quiet, X-ray selected clusters only have upper limits for their emission at E > 100 MeV. [Pg.90]


See other pages where Power, definitions sources is mentioned: [Pg.142]    [Pg.278]    [Pg.1592]    [Pg.391]    [Pg.110]    [Pg.225]    [Pg.99]    [Pg.51]    [Pg.1395]    [Pg.450]    [Pg.192]    [Pg.381]    [Pg.630]    [Pg.339]    [Pg.1395]    [Pg.392]    [Pg.152]    [Pg.641]    [Pg.34]    [Pg.266]    [Pg.319]    [Pg.501]    [Pg.874]    [Pg.319]    [Pg.288]    [Pg.361]    [Pg.377]    [Pg.353]    [Pg.120]    [Pg.194]    [Pg.5]    [Pg.105]   
See also in sourсe #XX -- [ Pg.271 ]




SEARCH



Power definition

Power sources

Source definition

© 2024 chempedia.info