Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potentiometry redox electrodes

Redox Electrodes Electrodes of the first and second kind develop a potential as the result of a redox reaction in which the metallic electrode undergoes a change in its oxidation state. Metallic electrodes also can serve simply as a source of, or a sink for, electrons in other redox reactions. Such electrodes are called redox electrodes. The Pt cathode in Example 11.1 is an example of a redox electrode because its potential is determined by the concentrations of Ee + and Ee + in the indicator half-cell. Note that the potential of a redox electrode generally responds to the concentration of more than one ion, limiting their usefulness for direct potentiometry. [Pg.475]

A major branch of analytical chemistry uses electrical measurements of chemical processes at the surface of an electrode for analytical purposes. For example, hormones released from a single cell can be measured in this manner. Principles developed in this chapter provide a foundation for potentiometry, redox titrations, electrogravimetric and coulometric analysis, voltammetry, and amperometry in the following chapters.1-2... [Pg.270]

Open-circuit potential (OCP) — This is the - potential of the - working electrode relative to the - reference electrode when no potential or - current is being applied to the - cell [i]. In case of a reversible electrode system (- reversibility) the OCP is also referred to as the - equilibrium potential. Otherwise it is called the - rest potential, or the - corrosion potential, depending on the studied system. The OCP is measured using high-input - impedance voltmeters, or potentiometers, as in - potentiometry. OCP s of - electrodes of the first, the second, and the third kind, of - redox electrodes and of - ion-selective membrane electrodes are defined by the - Nernst equation. The - corrosion po-... [Pg.535]

Redox indicators have been widely used to detect the endpoint of titrimetric redox analyses. Potentio-metric detection of endpoints has now largely replaced the use of indicators, but redox indicators are still in use because of their simplicity. Redox indicators can be used to assess redox potentials in many redox systems where visual rather than electrical measurements can sometimes be more helpful. Recent applications of redox indicators include flow-injection analysis with colorimetric monitoring, or the measurement of electrode potentials of solutions using an immobilized redox indicator on the end of a fiber-optic probe. In studies of the metabolism of cells, redox indicators with their color or fluorescence changes are sometimes more convenient than potentiometry. Redox indicators suffer from their dependence on pH changes, and there is not yet a universal redox indicator that can show the redox potential of a solution over a wide range of potentials... [Pg.2197]

In analytical voltammetry the analyte is usually dissolved in an electrolyte solution, and, when both the oxidized and the reduced forms are soluble in the solution, this, in electrochemistry, is called a redox electrode. In the simplest case the electrode is a metallic conductor immersed in an electrolyte solution. At the surface of the electrode, dissolved electroactive ions change their charges by exchanging one or more electrons with the conductor. In this electrochemical reaction both the reduced and oxidized ions remain in solution, while the conductor is chemically inert and serves only as a source and sink of electrons. The technical term electrode usually also includes all mechanical parts supporting the conductor (e.g., a rotating disk electrode, or a static mercury drop electrode). Furthermore, it includes all chemical and physical modifications of the conductor, or its surface (e.g., a mercury film electrode, an enzyme electrode, a carbon paste electrode, etc.). However, this term does not cover the electrolyte solution and the ionic part of a double layer at the electrode/solution interface. Ion-selective electrodes, which are used in potentiometry, will not be considered in this chapter. Theoretical and practical aspects of electrodes are covered in various books and reviews [1-9]. [Pg.245]

Finding the End Point Potentiometrically Another method for locating the end point of a redox titration is to use an appropriate electrode to monitor the change in electrochemical potential as titrant is added to a solution of analyte. The end point can then be found from a visual inspection of the titration curve. The simplest experimental design (Figure 9.38) consists of a Pt indicator electrode whose potential is governed by the analyte s or titrant s redox half-reaction, and a reference electrode that has a fixed potential. A further discussion of potentiometry is found in Chapter 11. [Pg.339]

When first developed, potentiometry was restricted to redox equilibria at metallic electrodes, limiting its application to a few ions. In 1906, Cremer discovered that a potential difference exists between the two sides of a thin glass membrane when opposite sides of the membrane are in contact with solutions containing different concentrations of H3O+. This discovery led to the development of the glass pH electrode in 1909. Other types of membranes also yield useful potentials. Kolthoff and Sanders, for example, showed in 1937 that pellets made from AgCl could be used to determine the concentration of Ag+. Electrodes based on membrane potentials are called ion-selective electrodes, and their continued development has extended potentiometry to a diverse array of analytes. [Pg.465]

The potential of a metallic electrode is determined by the position of a redox reaction at the electrode-solution interface. Three types of metallic electrodes are commonly used in potentiometry, each of which is considered in the following discussion. [Pg.473]

An important condition for potentiometry is high selectivity the electrode s potential shonld respond only to the snbstance being examined, not to other components in the solntion. This condition greatly restricts the possibilities of the version of potentiometry described here when metal electrodes are nsed as the indicator electrodes. The solntion shonld be free of ions of more electropositive metals and of the components of other redox systems (in particnlar, dissolved air). Only corrosion-resistant materials can be nsed as electrodes. It is not possible at all with this method to determine alkali or alkaline-earth metal ions in aqneons solntions. [Pg.399]

As in normal potentiometry one uses and indicator electrode versus a reference electrode, the electrodes should, especially in pH measurements, be those recommended by the supplier of the pH meter in order to obtain a direct reading of the pH value displayed. In redox or other potential measurements any suitable reference electrode of known potential can be applied. However, a reference electrode is only suitable if a junction potential is excluded, e.g., an Ag-AgCl electrode in a solution of fixed Ag+ concentration or a calomel electrode in a saturated KC1 solution as a junction in many instances a direct contact of Cl" with the solution under test (possibly causing precipitation therein) is not allowed, so that an extra or so-called double junction with KN03 solution is required. Sometimes micro-electrodes or other adaptations of the surface are required. [Pg.86]

Potentiometry is a method of obtaining chemical information by measuring the potential of an indicator electrode under zero current flow. It is based on the Nernst equation, which expresses the electrode potential as a function of the activity (or activities) of the chemical species in solution. The information obtained varies with indicator electrode, from the activity (concentration) of a chemical species to the redox potential in the solution. The potential of the indicator electrode is measured against a reference electrode using a high inptit-impedance mV/pH me-... [Pg.148]

The characteristics of redox reactions in non-aqueous solutions were discussed in Chapter 4. Potentiometry is a powerful tool for studying redox reactions, although polarography and voltammetry are more popular. The indicator electrode is a platinum wire or other inert electrode. We can accurately determine the standard potential of a redox couple by measuring the electrode potential in the solution containing both the reduced and the oxidized forms of known concentrations. Poten-tiometric redox titrations are also useful to elucidate redox reaction mechanisms and to obtain standard redox potentials. In some solvents, the measurable potential range is much wider than in aqueous solutions and various redox reactions that are impossible in aqueous solutions are possible. [Pg.188]

Use of the potential of a galvanic cell to measure the concentration of an electroactive species developed later than a number of other electrochemical methods. In part this was because a rational relation between the electrode potential and the concentration of an electroactive species required the development of thermodynamics, and in particular its application to electrochemical phenomena. The work of J. Willard Gibbs1 in the 1870s provided the foundation for the Nemst equation.2 The latter provides a quantitative relationship between potential and the ratio of concentrations for a redox couple [ox l[red ), and is the basis for potentiometry and potentiometric titrations.3 The utility of potentiometric measurements for the characterization of ionic solutions was established with the invention of the glass electrode in 1909 for a selective potentiometric response to hydronium ion concentrations.4 Another milestone in the development of potentiometric measurements was the introduction of the hydrogen electrode for the measurement of hydronium ion concentrations 5 one of many important contributions by Professor Joel Hildebrand. Subsequent development of special glass formulations has made possible electrodes that are selective to different monovalent cations.6"8 The idea is so attractive that intense effort has led to the development of electrodes that are selective for many cations and anions, as well as several gas- and bioselective electrodes.9 The use of these electrodes and the potentiometric measurement of pH continue to be among the most important applications of electrochemistry. [Pg.24]

Measurements can be done using the technique of redox potentiometry. In experiments of this type, mitochondria are incubated anaerobically in the presence of a reference electrode [for example, a hydrogen electrode (Chap. 10)] and a platinum electrode and with secondary redox mediators. These mediators form redox pairs with Ea values intermediate between the reference electrode and the electron-transport-chain component of interest they permit rapid equilibration of electrons between the electrode and the electron-transport-chain component. The experimental system is allowed to reach equilibrium at a particular E value. This value can then be changed by addition of a reducing agent (such as reduced ascorbate or NADH), and the relationship between E and the levels of oxidized and reduced electron-transport-chain components is measured. The 0 values can then be calculated using the Nernst equation (Chap. 10) ... [Pg.406]

Although the redox processes see Redox Properties Processes) occurring on the surface of a dropping mercury electrode are generally more complex than those in potentiometry, the simplicity of polarographic apparatus has led it to be widely used in equilibrium solution chemistry. If a reversible electrode process is assured, the half-wave electrode potential is given by the Heyrovsky-Ilkovic equation ... [Pg.4548]

Redox Titrations Electrochemistry Chapter 19 Standard Electrode Potentials Chapter 20 Oxidation/ReductionTitrations Chapter 21 Potentiometry Chapter 17 Using Electrode Potentials Chapter 18 Oxidation/Reduction Titrations Chapter 19 Potentiometry... [Pg.1177]

Potentiometry is an electrochemical technique in which the electrical potential of an "inert" electrode is measured against that of a reference electrode while both are immersed in an aqueous solution. A problem in potentiometry is that the measured potential may be slow to achieve a steady value. This is especially common in attempts to measure the Eh of solutions that are poorly poised, as is the case with most natural waters, and it is not uncommon for measured redox potentials to drift for many hours Q, 2). The long equilibration times, together with published reports of large discrepancies between platinum Eh values and actual solution compositions (2), have led to a great deal of uncertainty and skepticism about the use of Eh measurements. [Pg.339]

Owing to its simplicity and flexibility, potentiometry is probably the most widely used analytical technique. It is most commonly used for measuring pH and for the selective determination of analyte concentrations in a wide variety of sample solutions. Potentiometry is based on the measurement of the potential difference between the reference and working electrodes in a voltaic cell. In this type of cell, as mentioned above, a spontaneous redox chemical reaction occurs due to one reagent being oxidised (losing electrons) at the anode... [Pg.147]


See other pages where Potentiometry redox electrodes is mentioned: [Pg.446]    [Pg.544]    [Pg.574]    [Pg.32]    [Pg.533]    [Pg.446]    [Pg.544]    [Pg.574]    [Pg.816]    [Pg.31]    [Pg.114]    [Pg.379]    [Pg.322]    [Pg.103]    [Pg.148]    [Pg.37]    [Pg.345]    [Pg.41]    [Pg.51]    [Pg.516]    [Pg.102]    [Pg.122]    [Pg.471]    [Pg.144]    [Pg.438]    [Pg.101]    [Pg.91]    [Pg.354]   
See also in sourсe #XX -- [ Pg.94 ]




SEARCH



Electrode redox electrodes

Potentiometry

Redox electrodes

Redox potentiometry

© 2024 chempedia.info