Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micelle potential

In addition, the concentration of potential micelle-formers will decrease with depth of burial of the source rock (as the generation of nitrogen, sulfur and oxygen polar compounds, which are more likely to form micellar solution, decreases with increasing depth). [Pg.103]

Two nucleation processes important to many people (including some surface scientists ) occur in the formation of gallstones in human bile and kidney stones in urine. Cholesterol crystallization in bile causes the formation of gallstones. Cryotransmission microscopy (Chapter VIII) studies of human bile reveal vesicles, micelles, and potential early crystallites indicating that the cholesterol crystallization in bile is not cooperative and the true nucleation time may be much shorter than that found by standard clinical analysis by light microscopy [75]. Kidney stones often form from crystals of calcium oxalates in urine. Inhibitors can prevent nucleation and influence the solid phase and intercrystallite interactions [76, 77]. Citrate, for example, is an important physiological inhibitor to the formation of calcium renal stones. Electrokinetic studies (see Section V-6) have shown the effect of various inhibitors on the surface potential and colloidal stability of micrometer-sized dispersions of calcium oxalate crystals formed in synthetic urine [78, 79]. [Pg.338]

Much use has been made of micellar systems in the study of photophysical processes, such as in excited-state quenching by energy transfer or electron transfer (see Refs. 214-218 for examples). In the latter case, ions are involved, and their selective exclusion from the Stem and electrical double layer of charged micelles (see Ref. 219) can have dramatic effects, and ones of potential imfKntance in solar energy conversion systems. [Pg.484]

Herein Pa and Pb are the micelle - water partition coefficients of A and B, respectively, defined as ratios of the concentrations in the micellar and aqueous phase [S] is the concentration of surfactant V. ai,s is fhe molar volume of the micellised surfactant and k and k , are the second-order rate constants for the reaction in the micellar pseudophase and in the aqueous phase, respectively. The appearance of the molar volume of the surfactant in this equation is somewhat alarming. It is difficult to identify the volume of the micellar pseudophase that can be regarded as the potential reaction volume. Moreover, the reactants are often not homogeneously distributed throughout the micelle and... [Pg.130]

The enhanced binding predicts a catalytic potential for these solutions and prompted us to investigate the influence of the different types of micelles on the rate of the copper-ion catalysed reaction. Table 5.5 summarises the results, which are in perfect agreement with the conclusions drawn from the complexation studies. [Pg.141]

Mesoscale simulations model a material as a collection of units, called beads. Each bead might represent a substructure, molecule, monomer, micelle, micro-crystalline domain, solid particle, or an arbitrary region of a fluid. Multiple beads might be connected, typically by a harmonic potential, in order to model a polymer. A simulation is then conducted in which there is an interaction potential between beads and sometimes dynamical equations of motion. This is very hard to do with extremely large molecular dynamics calculations because they would have to be very accurate to correctly reflect the small free energy differences between microstates. There are algorithms for determining an appropriate bead size from molecular dynamics and Monte Carlo simulations. [Pg.273]

In a class of reahstic lattice models, hydrocarbon chains are placed on a diamond lattice in order to imitate the zigzag structure of the carbon backbones and the trans and gauche bonds. Such models have been used early on to study micelle structures [104], monolayers [105], and bilayers [106]. Levine and coworkers have introduced an even more sophisticated model, which allows one to consider unsaturated C=C bonds and stiffer molecules such as cholesterol a monomer occupies several lattice sites on a cubic lattice, the saturated bonds between monomers are taken from a given set of allowed bonds with length /5, and torsional potentials are introduced to distinguish between trans and "gauche conformations [107,108]. [Pg.643]

Beyond the CMC, surfactants which are added to the solution thus form micelles which are in equilibrium with the free surfactants. This explains why Xi and level off at that concentration. Note that even though it is called critical, the CMC is not related to a phase transition. Therefore, it is not defined unambiguously. In the simulations, some authors identify it with the concentration where more than half of the surfactants are assembled into aggregates [114] others determine the intersection point of linear fits to the low concentration and the high concentration regime, either plotting the free surfactant concentration vs the total surfactant concentration [115], or plotting the surfactant chemical potential vs ln( ) [119]. [Pg.652]

Figure 27.1 A soap micelle solubilizing a grease particle in water. An electrostatic potential map of a fatty acid carboxylate shows how the negative charge is located in the head group. Figure 27.1 A soap micelle solubilizing a grease particle in water. An electrostatic potential map of a fatty acid carboxylate shows how the negative charge is located in the head group.
It is now believed from studies on the natural photosynthetic systems that microenvironments for the photoinduced ET reaction play an important role in the suppression of the back ET [1-3]. As such reaction environments, molecular assembly systems such as micelles [4], liposomes [5], microemulsions [6-8] and colloids [9] have been extensively investigated. In them, the presence of microscopically heterogeneous phases and interfacial electrostatic potential is the key to the ET rate control. [Pg.52]

Functionalized polyelectrolytes are promising candidates for photoinduced ET reaction systems. In recent years, much attention has been focused on modifying the photophysical and photochemical processes by use of polyelectrolyte systems, because dramatic effects are often brought about by the interfacial electrostatic potential and/or the existence of microphase structures in such systems [10, 11], A characteristic feature of polymers as reaction media, in general, lies in the potential that they make a wider variety of molecular designs possible than the conventional organized molecular assemblies such as surfactant micelles and vesicles. From a practical point of view, polymer systems have a potential advantage in that polymers per se can form film and may be assembled into a variety of devices and systems with ease. [Pg.52]

AB diblock copolymers in the presence of a selective surface can form an adsorbed layer, which is a planar form of aggregation or self-assembly. This is very useful in the manipulation of the surface properties of solid surfaces, especially those that are employed in liquid media. Several situations have been studied both theoretically and experimentally, among them the case of a selective surface but a nonselective solvent [75] which results in swelling of both the anchor and the buoy layers. However, we concentrate on the situation most closely related to the micelle conditions just discussed, namely, adsorption from a selective solvent. Our theoretical discussion is adapted and abbreviated from that of Marques et al. [76], who considered many features not discussed here. They began their analysis from the grand canonical free energy of a block copolymer layer in equilibrium with a reservoir containing soluble block copolymer at chemical potential peK. They also considered the possible effects of micellization in solution on the adsorption process [61]. We assume in this presentation that the anchor layer is in a solvent-free, melt state above Tg. The anchor layer is assumed to be thin and smooth, with a sharp interface between it and the solvent swollen buoy layer. [Pg.50]

At the end of the 1960s, Subba Rao et al. examined the influence of the interface on the CMC values [56]. They found a decrease in the CMC at the oil-water interface compared with the air-water interface. The CMC decreased by about 10% in the presence of heptane and by about 30-40% in the presence of benzene. The solubilization of the hydrocarbon in the micelle interior results in an increase in the micelle size and a slight change in the curvature of the micelle surface. The electrical potential and hence the electrical work of... [Pg.471]

The potential of reversed micelles needs to be evaluated by theoretical analysis of the metal ion distribution within micelles, by evaluation of the free energy of the solvated ions in the reversed micelle organic solution and the bulk aqueous water, and by the experimental characterization of reversed micelles by small-angle neutron and x-ray scattering. [Pg.137]

The most important nanomaterial synthesis methods include nanolithography techniques, template-directed syntheses, vapor-phase methods, vapor-liquid-solid (VLS) methods, solution-liquid-solid (SLS) approaches, sol-gel processes, micelle, vapor deposition, solvothermal methods, and pyrolysis methods [1, 2]. For many of these procedures, the control of size and shape, the flexibility in the materials that can be synthesized, and the potential for scaling up, are the main limitations. In general, the understanding of the growth mechanism of any as-... [Pg.295]

In 2000, the first example of ELP diblock copolymers for reversible stimulus-responsive self-assembly of nanoparticles was reported and their potential use in controlled delivery and release was suggested [87]. Later, these type of diblock copolypeptides were also covalently crossUnked through disulfide bond formation after self-assembly into micellar nanoparticles. In addition, the encapsulation of l-anilinonaphthalene-8-sulfonic acid, a hydrophobic fluorescent dye that fluoresces in hydrophobic enviromnent, was used to investigate the capacity of the micelle for hydrophobic drugs [88]. Fujita et al. replaced the hydrophilic ELP block by a polyaspartic acid chain (D ). They created a set of block copolymers with varying... [Pg.88]

In spite of the potentialities of reversed micelles entrapping nonaqueous highly polar solvents [34], very few investigations on the solubilization in such systems are reported in the literature. An example is the study of the solubilization of zinc-tetraphenylporphyrin (ZnTPP) in ethylene glycol/AOT/hydrocarbon systems by steady-state and transient... [Pg.476]


See other pages where Micelle potential is mentioned: [Pg.46]    [Pg.34]    [Pg.46]    [Pg.34]    [Pg.242]    [Pg.415]    [Pg.2586]    [Pg.125]    [Pg.136]    [Pg.775]    [Pg.48]    [Pg.192]    [Pg.229]    [Pg.361]    [Pg.534]    [Pg.1442]    [Pg.377]    [Pg.647]    [Pg.648]    [Pg.651]    [Pg.655]    [Pg.65]    [Pg.559]    [Pg.632]    [Pg.167]    [Pg.235]    [Pg.3]    [Pg.156]    [Pg.70]    [Pg.88]    [Pg.490]    [Pg.497]   
See also in sourсe #XX -- [ Pg.145 ]




SEARCH



© 2024 chempedia.info