Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium chloride method

Several methods are available for producing thorium metal it can be obtained by reducing thorium oxide with calcium, by electrolysis of anhydrous thorium chloride in a fused mixture of sodium and potassium chlorides, by calcium reduction of thorium tetrachloride mixed with... [Pg.174]

Potassium Chloride. The principal ore encountered in the U.S. and Canadian mines is sylvinite [12174-64-0] a mechanical mixture of KCl and NaCl. Three beneficiation methods used for producing fertilizer grades of KCl ate thermal dissolution, heavy media separation, and flotation (qv). The choice of method depends on factors such as grade and type of ore, local energy sources, amount of clay present, and local fuel and water availabiUty and costs. [Pg.232]

Several methods have received considerable research attention as alternatives to salt curing. These include use of sodium bisulfite as a disinfectant to allow preservation with or without decreased salt in a brine cure use of disinfectants such as quatenary amines for temporary preservation in direct shipping to the taimery from the packing plant (see Disinfectants and antiseptics) preservation of hides by radiation sterilization (see Sterilization techniques) and substitution of materials such as potassium chloride for sodium chloride. These methods have found only limited commercial success. [Pg.83]

Devising an economical method of producing agricultural-grade potassium phosphates from potassium chloride and wet-process phosphoric acid has been the subject of intense agricultural—chemical research (37—39). Limited quantities have been produced industrially. The impact on the overall quantities of phosphoms and potassium compounds consumed by the fertilizer industry is small. Because potassium phosphates are an excellent source of two essential fertilizer elements, this research is expected to continue. [Pg.536]

Oxychlorination catalysts are prepared by impregnation methods, though the solutions are very corrosive and special attention must be paid to the materials of constmction. Potassium chloride is used as a catalyst component to increase catalyst life by reducing losses of copper chloride by volatilisation. The catalysts used in fixed-bed reactors are typically 5 mm diameter rings or spheres, whereas a 20—100 micrometer powder is used in fluid-bed operations. [Pg.203]

There has been much interest in making chemicals from brine because of the low expense compared to alternative methods. Lithium, for example, had been mostly produced from spodumene ore, but now most is produced from brine. Those now producing from ore are seriously researching brine reserves and contemplating converting to brine sources before the turn of the century. Similady, solar salt has cost advantages over mined rock salt. Potassium chloride produced from brine has more than doubled from 1980 to 1990. [Pg.414]

Another method of fractional crystallization, in which advantage is taken of different ciystallization rates, is sometimes used. Thus, a solution saturated with borax and potassium chloride will, in the absence of borax seed ciystals, precipitate only potassium chloride on rapid coohng. The borax remains behind as a supersaturated solution, and the potassium chloride crystals can be removed before the slower borax crystalhzation starts. [Pg.1655]

The molecular absoi ption spectra, registered at a lower temperature (e.g. 700 °C for iodide or chloride of potassium or sodium), enable one to find the absorbance ratio for any pair of wavelengths in the measurement range. These ratios can be used as a correction factor for analytical signal in atomic absoi ption analysis (at atomization temperatures above 2000 °C). The proposed method was tested by determination of beforehand known silicon and iron content in potassium chloride and sodium iodide respectively. The results ai e subject to random error only. [Pg.78]

Potassium chloride is crystallized from sea bitterns containing chlorides of potassium, sodium and calcium by ammoniation (Jagadesh etai, 1992). This process is less energy intensive and more efficient than by fractional crystallization by evaporation, as the ammonia used is recovered by distillation. Crystallization produces a better quality product in terms of both size and purity than by other methods. [Pg.234]

Discussion. The method is applicable to the determination of a mixture of two salts having the same anion (e.g. sodium chloride and potassium chloride) or the same cation (e.g. potassium chloride and potassium bromide). For example, to determine the amount of sodium and potassium chlorides in a mixture of the two salts, a known weight (Wj g) of the solid mixture is taken, and the total chloride is determined with standard 0.1 M silver nitrate, using Mohr s method or an adsorption indicator. Let w2 g of silver nitrate be required for the complete precipitation of Wj g of the mixture, which contains xg of NaCl and yg of KC1. Then ... [Pg.352]

Now suppose that the determination of potassium chloride and potassium bromide in a mixture is desired. The total halide is determined by Mohr s method or with an adsorption indicator. Let the weight of the mixture be w3 g and w4 g, be the weight of silver nitrate required for complete precipitation,... [Pg.352]

Reagents. In view of the sensitivity of the method, the reagents employed for preparing the ground solutions must be very pure, and the water used should be re-distilled in an all-glass, or better, an all-silica apparatus the traces of organic material sometimes encountered in demineralised water (Section 3.17) make such water unsuitable for this technique unless it is distilled. The common supporting electrolytes include potassium chloride, sodium acetate-acetic acid buffer solutions, ammonia-ammonium chloride buffer solutions, hydrochloric acid and potassium nitrate. [Pg.624]

The mechanism of decarboxylation of acids containing an amino substituent is further complicated by the possibility of protonation of the substituent and the fact that the species NH2ArCOOH is kinetically equivalent to the zwitterion NHj ArCOO. Both of these species, as well as the anion NH2 ArCOO" and even NH3 ArCOOH must be considered. Willi and Stocker644 investigated by the spectroscopic method the kinetics of the acid-catalysed decarboxylation of 4-aminosalicyclic acid in dilute hydrochloric acid, (ionic strength 0.1, addition of potassium chloride) and also in acetate buffers at 20 °C. The ionisation constants K0 = [HA][H+][H2A+] 1 (for protonation of nitrogen) and Kx = [A"][H+] [HA]-1, were determined at /i = 0.1 and 20 °C. The kinetics followed equation (262)... [Pg.312]

The only method that has been described for the assay of technical grades of parathion and its formulations is that of Bowen and Edwards (7). The method makes use of the polarograph. The electrolysis is carried out in an acetone-water solution with potassium chloride as the electrolyte and gelatin as the suppressor. An accuracy of 1% is obtained. [Pg.69]

Gaiser and Heusler53 have shown that the electrode reaction Zn2+ + 2e Zn proceeds in two steps Zn2+ 4- e Zn+ and Zn+ + e Zn(s). Van Der Pol et a/.,54 using ac coupled with the faradaic rectification polarography method, also concluded that this reaction is a multistep reaction. Hurlen and Fischer55 have studied this reaction in an acid solution of potassium chloride and... [Pg.200]

The one-pot conversions of oximes to gem-halonitro compounds have been achieved by using A(/V,/V.-trihalo-l,3,5-triazines,131 chloroperoxidase in the presence of hydrogen peroxide and potassium chloride,132 or commercial OXONE and sodium chloride.133 Of these methods, the case of OXONE may be the most convenient (Eq. 2.65). [Pg.23]

Vishwavidyalaya et al. [22] used a difference-spectrophotometric method for the estimation of primaquine phosphate in tablets. One portion of powdered tablets, equivalent to 7.5 mg of primaquine phosphate, was extracted with hydrochloric acid-potassium chloride buffer (pH 2) and a second portion was extracted with phosphate buffer (pH 10). Primaquine phosphate was determined from the difference in absorbance of the acid and alkaline extracts at 254.2 nm. The calibration graph was rectilinear from 2 to 14 pg/mL of primaquine phosphate. Recovery was 98.6% and no interference was observed from excipients. Results compared with those by the British Pharmacopoeial method. [Pg.177]

A disadvantage of the conventional precipitation method in which the supersaturation was allowed to decrease during the reactions, was that different calcium phosphate phases could form and subsequently dissolve during the course of the reactions. In the present work, the constant composition method was used to investigate the influence of sodium chloride, potassium chloride, and potassium nitrate, as background electrolyte upon the rate of crystallization of HAP in solutions supersaturated only with respect to this phase. These experiments were made in solutions containing totaj... [Pg.654]

Crystallisation was one of the earliest methods used for separation of radioactive microcomponents from a mass of inert material. Uranium X, a thorium isotope, is readily concentrated in good yield in the mother liquors of crystallisation of uranyl nitrate (11), (33), (108). A similar method has been used to separate sulphur-35 [produced by the (n, p) reaction on chlorine-35] from pile irradiated sodium ot potassium chloride (54), (133). Advantage is taken of the low solubility of the target materials in concentrated ice-cold hydrochloric acid, when the sulphur-35 as sulphate remains in the mother-liquors. Subsequent purification of the sulphur-35 from small amounts of phosphorus-32 produced by the (n, a) reaction on the chlorine is, of course, required. Other examples are the precipitation of barium chloride containing barium-1 from concentrated hydrochloric acid solution, leaving the daughter product, carrier-free caesium-131, in solution (21) and a similar separation of calcium-45 from added barium carrier has been used (60). [Pg.12]


See other pages where Potassium chloride method is mentioned: [Pg.510]    [Pg.510]    [Pg.472]    [Pg.630]    [Pg.124]    [Pg.479]    [Pg.236]    [Pg.331]    [Pg.524]    [Pg.524]    [Pg.527]    [Pg.529]    [Pg.323]    [Pg.514]    [Pg.1317]    [Pg.603]    [Pg.619]    [Pg.99]    [Pg.239]    [Pg.504]    [Pg.1011]    [Pg.232]    [Pg.1178]    [Pg.374]    [Pg.287]    [Pg.256]    [Pg.43]    [Pg.133]    [Pg.29]    [Pg.140]    [Pg.55]    [Pg.271]   
See also in sourсe #XX -- [ Pg.67 ]




SEARCH



Potassium chlorid

© 2024 chempedia.info