Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium chains

Fig. 2. STM images of 0.5 ML of K on Si(100)2xl (4° stepped in order to obtain a single-domain surface). Tuimeling voltage = 1.2 V (left) and -1.2 V (right). The distance between two potassium chains is 7.68 A. From [91 Sou]. Fig. 2. STM images of 0.5 ML of K on Si(100)2xl (4° stepped in order to obtain a single-domain surface). Tuimeling voltage = 1.2 V (left) and -1.2 V (right). The distance between two potassium chains is 7.68 A. From [91 Sou].
One-dimensional 10-ring channels are parallel to c. Transport of matter between the 10-ring channels is impossible because the 8-ring windows are blocked by potassium chains (which cannot be removed) in 8-ring channels parallel to b. One repeat unit of each channel is shown in Figure 3. [Pg.345]

Vigorous oxidation of a monosaccharide (e.g., with dUute nitric acid) produces carboxyl groups at both ends of the chain. Thus galactose gives the sparingly soluble mucic acid glucose affords the soluble saccharic acid, which is best isolated as the sparingly soluble acid potassium salt. [Pg.452]

Oxidation of side chains. Aromatic nitro compounds that contain a side chain (e.g., nitro derivatives of alkyl benzenes) may be oxidised to the corresponding acids either by alkahne potassium permanganate (Section IV,9, 6) or, preferably, with a sodium dichromate - sulphuric acid mixture in which medium the nitro compound is more soluble. [Pg.529]

The last isomerization is remarkable in that the triple bond can shift through a long carbon chain to the terminus, where it is fixed as the (kinetically) stable acetylide. The reagent is a solution of potassium diami no-propyl amide in 1,3-di-aminopropane. In some cases alkali metal amides in liquid ammonia car also bring about "contra-thermodynamic" isomerizations the reactions are successful only if the triple bond is in the 2-position. [Pg.88]

The amino add analysis of all peptide chains on the resins indicated a ratio of Pro Val 6.6 6.0 (calcd. 6 6). The peptides were then cleaved from the resin with 30% HBr in acetic acid and chromatogra phed on sephadex LH-20 in 0.001 M HCl. 335 mg dodecapeptide was isolated. Hydrolysis followed by quantitative amino acid analysis gave a ratio of Pro Val - 6.0 5.6 (calcd. 6 6). Cycll2ation in DMF with Woodward s reagent K (see scheme below) yielded after purification 138 mg of needles of the desired cyc-lododecapeptide with one equiv of acetic add. The compound yielded a yellow adduct with potassium picrate, and here an analytically more acceptable ratio Pro Val of 1.03 1.00 (calcd. 1 1) was found. The mass spectrum contained a molecular ion peak. No other spectral measurements (lack of ORD, NMR) have been reported. For a thirty-six step synthesis in which each step may cause side-reaaions the characterization of the final product should, of course, be more elaborate. [Pg.236]

Pellagra is a disease caused by a deficiency of niacm (C6FI5NO2) in the diet Niacin can be synthesized in the laboratory by the side chain oxidation of 3 methylpyndine with chromic acid or potassium permanganate Suggest a reasonable structure for niacin... [Pg.471]

A primary or secondary alkyl side chain on an aromatic ring is converted to a carboxyl group by reaction with a strong oxidizing agent such as potassium permanga nate or chromic acid... [Pg.807]

Ester hydrolysis in base is called saponification, which means soap making Over 2000 years ago the Phoenicians made soap by heating animal fat with wood ashes Animal fat is rich m glycerol triesters and wood ashes are a source of potassium car bonate Basic hydrolysis of the fats produced a mixture of long chain carboxylic acids as their potassium salts... [Pg.853]

Potassium and sodium salts of long chain carboxylic acids form micelles that dissolve grease (Section 19 5) and have cleansing properties The carboxylic acids obtained by saponification of fats are called fatty acids... [Pg.853]

Cromakalim (137) is a potassium channel activator commonly used as an antihypertensive agent (107). The rationale for the design of cromakalim is based on P-blockers such as propranolol (115) and atenolol (123). Conformational restriction of the propanolamine side chain as observed in the cromakalim chroman nucleus provides compounds with desired antihypertensive activity free of the side effects commonly associated with P-blockers. Enantiomerically pure cromakalim is produced by resolution of the diastereomeric (T)-a-meth5lben2ylcarbamate derivatives. X-ray crystallographic analysis of this diastereomer provides the absolute stereochemistry of cromakalim. Biological activity resides primarily in the (—)-(33, 4R)-enantiomer [94535-50-9] (137) (108). In spontaneously hypertensive rats, the (—)-(33, 4R)-enantiomer, at dosages of 0.3 mg/kg, lowers the systoHc pressure 47%, whereas the (+)-(3R,43)-enantiomer only decreases the systoHc pressure by 14% at a dose of 3.0 mg/kg. [Pg.253]

The unsaturation present at the end of the polyether chain acts as a chain terminator ia the polyurethane reaction and reduces some of the desired physical properties. Much work has been done ia iadustry to reduce unsaturation while continuing to use the same reactors and hoi ding down the cost. In a study (102) usiag 18-crown-6 ether with potassium hydroxide to polymerise PO, a rate enhancement of approximately 10 was found at 110°C and slightly higher at lower temperature. The activation energy for this process was found to be 65 kj/mol (mol ratio, r = 1.5 crown ether/KOH) compared to 78 kj/mol for the KOH-catalysed polymerisation of PO. It was also feasible to prepare a PPO with 10, 000 having narrow distribution at 40°C with added crown ether (r = 1.5) (103). The polymerisation rate under these conditions is about the same as that without crown ether at 80°C. [Pg.352]

Potassium Amides. The strong, extremely soluble, stable, and nonnucleophilic potassium amide base (42), potassium hexamethyldisilazane [40949-94-8] (KHMDS), KN [Si(CH2]2, pX = 28, has been developed and commercialized. KHMDS, ideal for regio/stereospecific deprotonation and enolization reactions for less acidic compounds, is available in both THF and toluene solutions. It has demonstrated benefits for reactions involving kinetic enolates (43), alkylation and acylation (44), Wittig reaction (45), epoxidation (46), Ireland-Claison rearrangement (47,48), isomerization (49,50), Darzen reaction (51), Dieckmann condensation (52), cyclization (53), chain and ring expansion (54,55), and elimination (56). [Pg.519]

Longer-chain amines, ie, arachidyl—behenyl (C2Q to C22) amines, are used ia special cases ia which brine temperatures exceed 35°C. At temperatures higher than ambient, normal tallow amine tends to dissolve and therefore is unavailable to coat the surfaces of the potassium chloride crystals. Amine consumption is from 50 g/1 (ca 40 wt % KCl) of high grade ore, to 150 g/1 (ca 20 wt % KCl) of low grade ore. [Pg.526]

The aromatic ring of alkylphenols imparts an acidic character to the hydroxyl group the piC of unhindered alkylphenols is 10—11 (2). Alkylphenols unsubstituted in the ortho position dissolve in aqueous caustic. As the carbon number of the alkyl chain increases, the solubihty of the alkah phenolate salt in water decreases, but aqueous caustic extractions of alkylphenols from an organic solution can be accomphshed at elevated temperatures. Bulky ortho substituents reduce the solubihty of the alkah phenolate in water. The term cryptophenol has been used to describe this phenomenon. A 35% solution of potassium hydroxide in methanol (Qaisen s alkah) dissolves such hindered phenols (3). [Pg.58]

Mineralocorticoids. Aldosterone [6251-69-0] (32), the most potent natural rnineralocorticoid, also possesses a A -3-one group, an oxygen substituent at Clip, and a C17P-2-hydroxyethan-l-one side chain. In addition, the C18 of aldosterone is oxidized to an aldehyde. Mineralocorticoids, particularly aldosterone, act to retain sodium and to prevent the retention of excess potassium. Antimineral ocorticoids have been used therapeutically as diuretics and as agents that regulate blood pressure (63—65). [Pg.418]

Another synthesis of the cortisol side chain from a C17-keto-steroid is shown in Figure 20. Treatment of a C3-protected steroid 3,3-ethanedyidimercapto-androst-4-ene-ll,17-dione [112743-82-5] (144) with a tnhaloacetate, 2inc, and a Lewis acid produces (145). Addition of a phenol and potassium carbonate to (145) in refluxing butanone yields the aryl vinyl ether (146). Concomitant reduction of the C20-ester and the Cll-ketone of (146) with lithium aluminum hydride forms (147). Deprotection of the C3-thioketal, followed by treatment of (148) with y /(7-chlotopetben2oic acid, produces epoxide (149). Hydrolysis of (149) under acidic conditions yields cortisol (29) (181). [Pg.434]


See other pages where Potassium chains is mentioned: [Pg.553]    [Pg.363]    [Pg.553]    [Pg.363]    [Pg.246]    [Pg.239]    [Pg.445]    [Pg.672]    [Pg.118]    [Pg.139]    [Pg.278]    [Pg.298]    [Pg.315]    [Pg.323]    [Pg.433]    [Pg.460]    [Pg.241]    [Pg.466]    [Pg.373]    [Pg.526]    [Pg.297]    [Pg.157]    [Pg.159]    [Pg.276]    [Pg.378]    [Pg.152]    [Pg.158]    [Pg.433]    [Pg.434]    [Pg.5]    [Pg.29]    [Pg.232]    [Pg.65]    [Pg.81]    [Pg.130]   
See also in sourсe #XX -- [ Pg.218 ]




SEARCH



Chain Compounds potassium salt

Potassium straight-chain

© 2024 chempedia.info