Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyvinyl reaction

Polymers can be classified as addition polymers and condensation polymers. Addition polymers are formed by iiitermolecular reactions of the monomeric units without the elimination of atoms or groups. An example is vinyl chloride, which can be made to combine with itself to yield polyvinyl chloride ... [Pg.1014]

The reaction between urea and Aiming sulfuric acid is rapid and exothermic. It may proceed with violent boiling unless the reaction temperature is controlled. The reactants are strongly acidic. Therefore, operators should wear suitable protective gear to guard against chemical hazard. Special stainless steel, mbber lining, fiber-reinforced plastics, and polyvinyl chloride and carbon equipment are used. [Pg.63]

Bead Polymerization Bulk reaction proceeds in independent droplets of 10 to 1,000 [Lm diameter suspended in water or other medium and insulated from each other by some colloid. A typical suspending agent is polyvinyl alcohol dissolved in water. The polymerization can be done to high conversion. Temperature control is easy because of the moderating thermal effect of the water and its low viscosity. The suspensions sometimes are unstable and agitation may be critical. Only batch reaciors appear to be in industrial use polyvinyl acetate in methanol, copolymers of acrylates and methacrylates, polyacrylonitrile in aqueous ZnCh solution, and others. Bead polymerization of styrene takes 8 to 12 h. [Pg.2102]

One class of materials with some inherent PSA properties includes polyvinyl-ethers. Vinyl ether monomers are industrially derived from the reaction of acetylene with alcohols [117]. The most common alcohols used are methanol, ethanol or isobutanol. A generic structure of the vinyl ether is shown below ... [Pg.509]

A weak cation-exchange resin is obtained by reaction of glyoxylic acid and a cross-linked polyvinyl alcohol. The polyvinyl alcohol is cross-linked with glutaraldehyde in the presence of hydrochloric acid. The cation-exchange resin has an exchange capacity of 3 meq/g or greater and a swelling volume of 10 ml/g or smaller (37-38). [Pg.10]

The largest commercial process is the hydroformylation of propene, which yields n-butyraldehyde and isobutyraldehyde. n-Butyraldehyde (n-butanal) is either hydrogenated to n-butanol or transformed to 2-ethyl-hexanol via aldol condensation and subsequent hydrogenation. 2-Ethylhexanol is an important plasticizer for polyvinyl chloride. This reaction is noted in Chapter 8. [Pg.164]

Vinyl chloride is an important monomer for polyvinyl chloride (PVC). The main route for obtaining this monomer, however, is via ethylene (Chapter 7). A new approach to utilize ethane as an inexpensive chemical intermediate is to ammoxidize it to acetonitrile. The reaction takes place in presence of a cobalt-B-zeolite. [Pg.171]

Phthalic anhydride s main use is for producing plasticizers by reactions with C4-C10 alcohols. The most important polyvinyl chloride plasticizer is formed by the reaction of 2-ethylhexanol (produced via butyraldehyde. Chapter 8) and phthalic anhydride ... [Pg.297]

In terms of tonnage the bulk of plastics produced are thermoplastics, a group which includes polyethylene, polyvinyl chloride (p.v.c.), the nylons, polycarbonates and cellulose acetate. There is however a second class of materials, the thermosetting plastics. They are supplied by the manufacturer either as long-chain molecules, similar to a typical thermoplastic molecule or as rather small branched molecules. They are shaped and then subjected to either heat or chemical reaction, or both, in such a way that the molecules link one with another to form a cross-linked network (Fig. 18.6). As the molecules are now interconnected they can no longer slide extensively one past the other and the material has set, cured or cross linked. Plastics materials behaving in this way are spoken of as thermosetting plastics, a term which is now used to include those materials which can in fact cross link with suitable catalysts at room temperature. [Pg.916]

There are numerous examples of chemical reactions consequent upon chemical groups which occur repeatedly along a chain. In some cases the reaction occurs randomly between adjacent pairs of groups such as in the reaction between aldehydes and polyvinyl alcohol and of zinc dust with polyvinyl chloride ... [Pg.924]

Polyvinyl acetate and derivatives Polyvinyl acetate is used largely for coating applications, but the derivative polyvinyl alcohol, will, providing there are some residual acetate groups, dissolve in water. Reaction products of polyvinyl alcohol with aldehydes such as polyvinyl formal and polyvinyl butyral are highly specialised materials. [Pg.932]

For flexible chain copolymers based on acrylic and methacrylic acids (AA and MA) crosslinked with a polyvinyl component, the inhomogeneity of the structures formed depends on the nature of the crosslinking agent, its content in the reaction mixture and the thermodynamic quality of the solvent [13,14],... [Pg.5]

Alcohol functions have also been introduced via hydrosilylation reactions, for example, the reaction of T8[OSiMe2H]8 with allyl alcohol and allyloxy ethanol (Table 19). In the first case, it has been postulated that the compound T8[OSiMe2 (CH2)30H]8 is not very stable due to back-biting of the -OH groups on the silicon corners (Figure 31). Nevertheless, it reacts with polymers such as polyvinyl pyrrolidone to give polymer hybrids (Table 19, entries 4 and 5). [Pg.55]

Thermal Effects in Addition Polymerizations. Table 13.2 shows the heats of reaction (per mole of monomer reacted) and nominal values of the adiabatic temperature rise for complete polymerization. The point made by Table 13.2 is clear even though the calculated values for T dia should not be taken literally for the vinyl addition polymers. All of these pol5Tners have ceiling temperatures where polymerization stops. Some, like polyvinyl chloride, will dramatically decompose, but most will approach equilibrium between monomer and low-molecular-weight polymer. A controlled polymerization yielding high-molecular-weight pol)mier requires substantial removal of heat or operation at low conversions. Both approaches are used industrially. [Pg.468]

When two polymers interact or react with each other, they are likely to provide a compatible, even a miscible, blend. Epoxidized natural rubber (ENR) interacts with chloro-sulfonated polyethylene (Hypalon) and polyvinyl chloride (PVC) forming partially miscible and miscible blends, respectively, due to the reaction between chlorosulfonic acid group and chlorine with epoxy group of ENR. Chiu et al. have studied the blends of chlorinated polyethylene (CR) with ENR at blend ratios of 75 25, 50 50, and 25 75, as well as pure rubbers using sulfur (Sg), 2-mercapto-benzothiazole, and 2-benzothiazole disulfide as vulcanizing agents [32]. They have studied Mooney viscosity, scorch... [Pg.316]

The combined results of kinetic studies on condensation polymerization reactions and on the degradation of various polymers by reactions which bring about chain scission demonstrate quite clearly that the chemical reactivity of a functional group does not ordinarily depend on the size of the molecule to which it is attached. Exceptions occur only when the chain is so short as to allow the specific effect of one end group on the reactivity of the other to be appreciable. Evidence from a third type of polymer reaction, namely, that in which the lateral substituents of the polymer chain undergo reaction without alteration in the degree of polymerization, also support this conclusion. The velocity of saponification of polyvinyl acetate, for example, is very nearly the same as that for ethyl acetate under the same conditions. ... [Pg.102]

With increasing pH the reaction became less complete as the reverse reaction + TiOj MV + Ti02 became more important. A potential of the conduction band of the TiOj particles of —0.1 to —0.2 V (pH = 0) was derived from these measurements. Stabilization of the particles by polyvinyl alcohol did not change this potential. Particles of 80 nm diameter had the same potential as particles of 7 nm. [Pg.154]

Colloids of a-FejOj are made by hydrolysis of FeClj and subsequent dialysis of the sol. Polyvinyl alcohol is often used as a stabilizing agent. The band gap in Fe203 is 2.2 eV. In some of the studies on colloidal Fc203 free radicals were generated by ionizing radiation and electron transfer reactions with the colloidal particles investigated. Buxton et al. observed a cathodic dissolution of a-FCjOj in acidic... [Pg.159]

Polyvinyl chloride has been modified by photochemical reactions in order to either produce a conductive polymer or to improve its light-stability. In the first case, the PVC plate was extensively photochlorinated and then degraded by UV exposure in N2. Total dehydrochlorination was achieved by a short Ar+ laser irradiation at 488 nm that leads to a purely carbon polymer which was shown to exhibit an electrical conductivity. In the second case, an epoxy-acrylate resin was coated onto a transparent PVC sheet and crosslinked by UV irradiation in the presence of both a photoinitiator and a UV absorber. This superficial treatment was found to greatly improve the photostability of PVC as well as its surface properties. [Pg.201]

In the production of polyvinyl chloride by the emulsion process, the percentages of catalyst, wetting agent, initiator, and solvent all affect the properties of the resultant polymer. They must be carefully metered into the reaction vessel. The vinyl chloride used must also be very pure. Either the scope must specify that the purchased raw material shall meet certain specifications, or some purification equipment must be installed so that the required quality can be obtained. [Pg.160]

In suspension polymerization, the monomer is agitated in a solvent to form droplets, and then stabilized through the use of surfactants to form micelles. The added initiator is soluble in the solvent such that the reaction is initiated at the skin of the micelle. Polymerization starts at the interface and proceeds towards the center of the droplet. Polystyrene and polyvinyl chloride are often produced via suspension polymerization processes. [Pg.56]

Another reaction mechanism that occurs in some chain-growth polymers is solvolysis. In this type of reaction, a species reacts with a C-X bond, where X represents a halogen, and breaks it. Specifically, this becomes important when describing the degradation of polyvinyl chloride. Acidic species act to remove the chlorine atom, forming hydrochloric acid. [Pg.193]

Vinyl chloride polymerization occurs via an exothermic radical reaction. In fact, the reaction is approximately 25% more exothermic than polyethylene polymerization. The highly exothermic nature of the reaction and the strong molecular weight dependence on temperature make heat transfer, and its control, critical to the manufacture of polyvinyl chloride. [Pg.345]

Why is the reaction temperature of polymerization of polyvinyl chloride so important to its manufacture ... [Pg.356]


See other pages where Polyvinyl reaction is mentioned: [Pg.419]    [Pg.22]    [Pg.295]    [Pg.510]    [Pg.551]    [Pg.207]    [Pg.504]    [Pg.654]    [Pg.333]    [Pg.833]    [Pg.28]    [Pg.119]    [Pg.166]    [Pg.173]    [Pg.262]    [Pg.150]    [Pg.156]    [Pg.301]    [Pg.45]    [Pg.346]    [Pg.135]    [Pg.171]    [Pg.200]    [Pg.165]    [Pg.172]    [Pg.151]   


SEARCH



Polyvinyl acetal reaction with isocyanates

© 2024 chempedia.info