Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyvinyl cell preparation

Chen W, Tang Y, Bao J, Gao Y, Liu C, Xing W, Lu T (2007) Study of cartxui-supported Au catalyst as the cathodic catalyst in a direct formic acid fuel cell prepared using a polyvinyl alcohol protectirai method. J Powct Sources 167 315—318... [Pg.63]

Uses Solvent for nitrocellulose, ethyl cellulose, polyvinyl butyral, rosin, shellac, manila resin, dyes fuel for utility plants home heating oil extender preparation of methyl esters, formaldehyde, methacrylates, methylamines, dimethyl terephthalate, polyformaldehydes methyl halides, ethylene glycol in gasoline and diesel oil antifreezes octane booster in gasoline source of hydrocarbon for fuel cells extractant for animal and vegetable oils denaturant for ethanol in formaldehyde solutions to inhibit polymerization softening agent for certain plastics dehydrator for natural gas intermediate in production of methyl terLbutyl ether. [Pg.712]

Screen Preparations, 100 micron thick x-ray intensifying screens were prepared using standard doctor blade coating techniques. The final phosphor volume was 50% when the coatings were dried. In most instances, the phosphor suspensions were prepared using polyvinyl butyral binders with viscosities adjusted to 2000 centipoise for the doctor blade operation and care was taken to avoid convection cell formation (9). A cross section of the screen construction is shown in Figure I. The completed screens consist of polyester (Mylar) base about 10 mil. thick, a 50 micron thick (TI02 (rutile) reflector layer, a 100 micron thick phosphor layer, a 10 micron thick clear cellulose acetate butyrate top protective layer. [Pg.204]

A composite material made of zinc oxide and polyvinyl alcohol was prepared by a sonochemical method [135]. Annealing of the composite under air removed the polymer, leaving porous spheres of ZnO. This change was accompanied by a change in the surface area from 2 to 34 m g k The porous ZnO particles were used as the electrode material for dye-sensitized solar cells (DSSCs). They were tested by forming a film of the doped porous ZnO on a conductive glass support. The performance of the solar cell is reported. [Pg.146]

Several processes for the electrolytic preparation of ferricyanides from ferrocy-anides have been examined [138]. For example, a divided cell was employed with asbestos paper or rope wound over a polyvinyl chloride frame or microporous rubber or cation exchange membrane as a diaphragm, an anode cd of 0.2-10 A/dm2, temperature of 10-70 °C with 2-10% alkali metal hydroxide as catholyte. A graphite or Cu anode was used under stationary or rotating conditions, or the cell was kept under the influence of ultrasound and a stainless steel cathode was used. [Pg.246]

A chloroplast suspension was mixed with native ferredoxln plus ferredoxin-NADP resuctase which were freshly prepared and co-immoblllzed with polyvinyl alcohol (PVA-117). The resulting film reduced NADP upon illumination as 0.64 vmole per mg chlorophyll per hr, about 1% yield of recovery. They applied the film to a photovoltaic cell,... [Pg.461]

Yang, J. M. and Chiu, H. C. 2012. Preparation and characterization of polyvinyl alcohol/chitosan blended membrane for alkaline direct methanol fuel cells. J. Membr Sci. 419-420 65-71. [Pg.479]

Ion conducting solid polymer electrolytes, such as those used in battery and fuel cell membranes, have been explored for use in supercapacitors [153,159,200,201]. While these electrolytes are environmentally benign and do not leak, conductivities are typically much lower than liquid or gel electrolyte systems, especially at subambient temperatures (important for military and space applications). Nevertheless, capacitance in supercapacitors prepared with solid polymer electrolytes has been reported to be as good as or better than the same devices constructed using liquid electrolytes. Nafion [200], polyethylene oxide [153], and polyvinyl alcohol [153] are the polymers of choice for this application. [Pg.1409]

Ljungberg N, Cavaille J-Y, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47 6285-6292 Lu Y, Weng L, Cao X (2005) Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter. Macromol Biosci 5 1101-1107 Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos Part A 39A 738-746 Magalhaes WLE, Cao X, Lucia LA (2009) Cellulose nanocrystals/cellulose core-in-shell nanocomposite assemblies. Langmuir. doi 10.1021Aa901928j Malainine ME, Mahrouz M, Dufresne A (2005) Thermoplastic nanocomposites based on cellulose microfibrils from Opuntiaficus-indica parenchyma cell. Compos Sci Technol 65 1520-1526 Marchessault RH, Sundararajan PR (1983) Cellulose. In Aspinall GO (ed) The polysaccharides. Academic, New York... [Pg.210]

In [74], completely phosphoric acid-free inter-mediate-T membranes and MEAs from 1/1 (mole imidazole/mole PO3H2) blend membranes of the PBI B5 (Fig. 4.4) and the phosphonated polymer polyvinyl phosphonic acid (PVPA) S12 (Fig. 4.5) were presented and compared to PA-doped membranes and MEAs. In the MEAs, a Pt electrocatalyst was deposited onto multiwaUed carbon nanotubes (MWNT) which have previously been coated with B5. This technique has previously been used for the preparation of electrocatalysts for anion-exchange membrane fuel cells [75]. In the final step, the MWNTs were coated with a layer of S12. It turned out that these membranes and MEAs possessed much higher durabilities than membranes and MEAs which have been doped with PA, therefore opening leeway for long-lasting intermediate-T fuel cell membranes without the PA leaching problems which are always present in PA-doped intermediate-T membranes and MEAs [76]. [Pg.75]

PHA solutions of various densities were used to prepare transparent flexible films. The surface properties of PHB and P(HB-co-HV) fllm scaffolds were similar to each other and to those of synthetic polyesters (polyethylene terephthalate, poly (methyl methacrylate), polyvinyl chloride, and polyethylene) (Shishatskaya 2(X)7X The scaffold s surface properties are important for cell attachment and proliferation. To enhance cell adhesion to the surface, improve the gas-dynamic properties of scaffolds, and increase their permeability for substrates and cell metabolites, the scaffolds can be treated by physical factors or by chemical reagents. Biocompatibility of PHA scaffolds has been enhanced by immobilizing collagen fllm matrices on the scaffold surface and coating with chitosan and chitosan/polysaccharides (Hu et al. 2003). [Pg.357]

Membrane prepared by blending sulfonated polybenzimidazole (PBI) with Nafion polymer showed a conductivity of 0.032 S cm The methanol permeability of the composite membrane was found to be 0.82 x 10 cm s as compared to Nafion, which is around 2.21 x 10 cm s [22]. Addressing the problem of methanol permeation, a composite membrane of Nafion with polyvinyl alcohol (PVA) for direct methanol fuel cell has been reported. It is concluded that at the weight ratio of 1 1 in PVA and Nafion, the thin film-coated Nafion membrane exhibited low methanol crossover, and the membrane protonic conductivity could be improved by the sulfonation treatment [23]. Recently, Zaidi et al. [24] prepared composite membranes of PFSA ionomer with boron phosphate and showed the conductivity of 6.2 X 10-2 S cm-i at 120°C. [Pg.17]


See other pages where Polyvinyl cell preparation is mentioned: [Pg.59]    [Pg.278]    [Pg.572]    [Pg.526]    [Pg.1752]    [Pg.732]    [Pg.512]    [Pg.297]    [Pg.749]    [Pg.987]    [Pg.1341]    [Pg.106]    [Pg.362]    [Pg.121]    [Pg.110]    [Pg.181]    [Pg.439]    [Pg.594]    [Pg.445]    [Pg.447]    [Pg.55]    [Pg.312]    [Pg.798]    [Pg.489]    [Pg.40]    [Pg.457]    [Pg.181]    [Pg.421]    [Pg.118]    [Pg.413]    [Pg.298]    [Pg.306]    [Pg.286]    [Pg.39]    [Pg.75]   
See also in sourсe #XX -- [ Pg.2 , Pg.266 ]

See also in sourсe #XX -- [ Pg.2 , Pg.266 ]




SEARCH



Cell preparation

Polyvinyl preparation

© 2024 chempedia.info