Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyurethane extenders

Similarly, due to the same reason, in the present book I had to refer only to few aspects regarding the synthesis and characterization of polyurethane ureas. I have mainly focused on polyurethanes extended with diols because our most recent works are dedicated to the investigation of polyurethanes with diols. Further works on the chemistry, morphology and mechanical performance of polyurethane ureas based on isocyanates of variable geometries will be included in our second book. [Pg.233]

Polyurethanes. The hard portion of polyurethane consists of a chain extender and polyisocyanate. The soft component is composed of polyol segments. [Pg.1024]

Uses. The largest uses of butanediol are internal consumption in manufacture of tetrahydrofuran and butyrolactone (145). The largest merchant uses are for poly(butylene terephthalate) resins (see Polyesters,thermoplastic) and in polyurethanes, both as a chain extender and as an ingredient in a hydroxyl-terminated polyester used as a macroglycol. Butanediol is also used as a solvent, as a monomer for vadous condensation polymers, and as an intermediate in the manufacture of other chemicals. [Pg.109]

Electromagnetic flow meters ate avadable with various liner and electrode materials. Liner and electrode selection is governed by the corrosion characteristics of the Hquid. Eor corrosive chemicals, fluoropolymer or ceramic liners and noble metal electrodes are commonly used polyurethane or mbber and stainless steel electrodes are often used for abrasive slurries. Some fluids tend to form an insulating coating on the electrodes introducing errors or loss of signal. To overcome this problem, specially shaped electrodes are avadable that extend into the flow stream and tend to self-clean. In another approach, the electrodes are periodically vibrated at ultrasonic frequencies. [Pg.65]

In the second step, a papermaking method is also used for the fine fibers, less than 0.1 tex (1 den). This process is usually followed by a high pressure water jet process instead of the third step. In the fourth step, to obtain the required properties in specific appHcations, a polyurethane is selected out of the segmented polyurethanes, which comprises a polymer diol, a diisocyanate, and a chain extender (see Urethane polymers). A DMF—water bath for coagulation is also controlled to create the adequate pore stmcture in combination with fibers. [Pg.94]

Only a few commercial uses for TDA per se have been found. In epoxy curing appHcations, 2,4- I DA has been used as a component of a eutectic mixture with short chain aUphatic glycidal ether resins (46) as well as by itself (46,47) TDA (46) and single isomers (47) are also used as amine curatives. TDA can be used as a chain extender in polyurethanes (48,49). TDA is cited as a monomer in making aromatic polymers with unique properties, eg, amorphous polyamides (50), powdered polyamides (51), and low melting, whoUy aromatic polyamides (52). [Pg.239]

Almost all TDA use is as a chemical intermediate, mosdy in polyurethanes. Toluenediamine derivatives are found as all three components of urethanes isocyanates, chain extenders, and polyols (see Isocyanates, organic Urethane polymers). [Pg.239]

Almost all IDA derived chain extenders are made through ortho-alkylation. Diethyltoluenediamine (DE I DA) (C H gN2) (53), with a market of about 33,000 t, is the most common. Many uses for /-B I DA have been cited (1,12). Both DE I DA and /-B I DA are especially useful in RIM appHcations (49,53—55). Di(methylthio)-TDA, made by dithioalkylation of TDA, is used in cast urethanes and with other TDI prepolymers (56). Styrenic alkylation products of TDA are said to be useful, eg, as in the formation of novel polyurethane—polyurea polymers (57,58). Progress in understanding aromatic diamine stmcture—activity relationships for polyurethane chain extenders should allow progress in developing new materials (59). Chlorinated IDA is used in polyurethane—polyurea polymers of low hysteresis (48) and in reinforced polyurethane tires (60). The chloro-TDA is made by hydrolysis of chloro-TDI, derived from TDA (61). [Pg.239]

The avadabihty of PMDI also led to the development of polyurethane-modified isocyanurate (PUIR) foams by 1967. The PUIR foams have superior thermal stabiUty and combustibiUty characteristics, which extend the use temperature of insulation foams well above 150°C. The PUIR foams are used in pipe, vessel, and solar panel insulation glass-fiber-reinforced PUIR roofing panels having superior dimensional stabiUty have also been developed. More recently, inexpensive polyester polyols based on residues obtained in the production of dimethyl terephthalate (DMT) have been used in the formulation of rigid polyurethane and PUIR foams. [Pg.342]

In addition, polyester polyols are made by the reaction of caprolactone with diols. Poly(caprolactone diols) are used in the manufacture of thermoplastic polyurethane elastomers with improved hydrolytic stabiHty (22). The hydrolytic stabiHty of the poly(caprolactone diol)-derived TPUs is comparable to TPUs based on the more expensive long-chain diol adipates (23). Polyether/polyester polyol hybrids are synthesized from low molecular weight polyester diols, which are extended with propylene oxide. [Pg.347]

Step-Growth Gopolymerization. A sample of a block copolymer prepared by condensation polymerisation is shown in equation 30 (37). In this process, a prepolymer diol (HO—Z—OH) is capped with isocyanate end groups and chain extended with a low molecular-weight diol (HO—E—OH) to give a so-called segmented block copolymer, containing polyurethane hard blocks and O—Z—O soft blocks. [Pg.180]

An entirely new concept was iatroduced iato mbber technology with the idea of "castable" elastomers, ie, the use of Hquid, low molecular-weight polymers that could be linked together (chain-extended) and cross-linked iato mbbery networks. This was an appealing idea because it avoided the use of heavy machinery to masticate and mix a high viscosity mbber prior to mol ding and vulcanization. In this development three types of polymers have played a dominant role, ie, polyurethanes, polysulftdes, and thermoplastic elastomers. [Pg.471]

Although the first polyurethanes were similar to that shown above, several polymers currently used contain many linkages in addition to the urethane group. Because of this the term polyurethane is now generally extended to cover all the complex reaction products of isocyanates and polyhydroxy compounds (the latter frequently known in this context as polyols). [Pg.778]

In recent years there has been a renewed appreciation of potential beneficial effects of roughness on a macroscale. For example Morris and Shanahan worked with sintered steel substrates bonded with a polyurethane adhesive [61]. They observed much higher fracture energy for joints with sintered steel compared with those with fully dense steel, and ascribed this to the mechanical interlocking of polymer within the pores. Extra energy was required to extend and break these polymer fibrils. [Pg.335]

The hard segments may be formed by the reaction of a diisocyanate and a chain extender . Early in the history of polyurethanes, high molecular weight urethanes were formed in two steps. The prepolymer step was the reaction between an excess... [Pg.773]

In a second step, the prepolymer was then reacted with a low molecular weight difunctional alcohol, commonly referred to as a diol or a diamine, to connect the prepolymer oligomers into a high molecular weight polyurethane. This step was referred to as the chain extension , resulting in the use of the term chain extenders to describe the low molecular weight diols or diamines that reacted with the prepolymer oligomers. [Pg.774]

The chain extension step may then take place in the water phase. Hydrazine and ethylene diamine are commonly used chain extenders for waterborne urethane dispersions. The isocyanates react with the diamine chain extenders much faster than with the water, thus forming polyurea linkages and building a high molecular weight polymer. More detailed information regarding the synthesis and process of making waterborne polyurethane dispersions is found in Dieterich s review article [58]. [Pg.789]

Polyester polyurethanes are usually based on a blend of a quasi-prepolymer (polyester/MDl) and a diol/polyester suitable for spray-up operation. An alternative is to use a solvent-containing system using blocked curatives to give an extended pot-life of 2 to 3 hours enabling them to be brush, roller or spray applied. [Pg.941]

Glycolysis of PETP leads to oligomers that are polycondensed with eaprolaetone. The obtained diols are extended with hexamethylene diisoeyanate. In eertain conditions the polyurethanes are totally miseible with PVC, leading to acceptable meehanieal eharaeteristies for the blend. A relation between the strueture of the polyurethane and miscibility with PVC is described. The mechanical characteristics of the blend depends on the polyurethane chemical structure. 34 refs. [Pg.63]


See other pages where Polyurethane extenders is mentioned: [Pg.103]    [Pg.81]    [Pg.6674]    [Pg.103]    [Pg.81]    [Pg.6674]    [Pg.67]    [Pg.304]    [Pg.540]    [Pg.540]    [Pg.361]    [Pg.522]    [Pg.349]    [Pg.341]    [Pg.341]    [Pg.344]    [Pg.350]    [Pg.351]    [Pg.351]    [Pg.476]    [Pg.336]    [Pg.125]    [Pg.189]    [Pg.55]    [Pg.790]    [Pg.774]    [Pg.774]    [Pg.775]    [Pg.786]    [Pg.35]    [Pg.1116]    [Pg.941]    [Pg.201]    [Pg.227]    [Pg.109]   
See also in sourсe #XX -- [ Pg.95 , Pg.96 , Pg.97 , Pg.98 ]

See also in sourсe #XX -- [ Pg.102 , Pg.106 ]




SEARCH



Degradable polyurethanes with varying chain extenders

Mechanical and thermal aspects of polyurethane elastomers extended with diamines

Polyurethane Amine extender

Polyurethane Glycol extender

Polyurethane elastomers—contd chain extenders

Polyurethanes chain extender

Polyurethanes chain extenders

Polyurethanes chain extenders used

Thermoplastic polyurethanes extenders

© 2024 chempedia.info