Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyurethane characteristics

Synthetic Rubbers. Synthetic rubbers are polymers with rubberlike characteristics that are prepared from dienes or olefins. Rubbers with special properties can also be prepared from other polymers, such as polyacrylates, fiuorinated hydrocarbons, and polyurethanes. [Pg.1007]

Electromagnetic flow meters ate avadable with various liner and electrode materials. Liner and electrode selection is governed by the corrosion characteristics of the Hquid. Eor corrosive chemicals, fluoropolymer or ceramic liners and noble metal electrodes are commonly used polyurethane or mbber and stainless steel electrodes are often used for abrasive slurries. Some fluids tend to form an insulating coating on the electrodes introducing errors or loss of signal. To overcome this problem, specially shaped electrodes are avadable that extend into the flow stream and tend to self-clean. In another approach, the electrodes are periodically vibrated at ultrasonic frequencies. [Pg.65]

Miscellaneous chemicals are used to modify the final properties of rigid polyurethane foams. Eor example, halogenated materials are used for flammabihty reduction, diols may be added for toughness or flexibiUty, and terephthalate-based polyester polyols may be used for decreased flammabiUty and smoke generation. Measurements of flammabihty and smoke characteristics are made with laboratory tests and do not necessarily reflect the effects of foams in actual fire situations. [Pg.418]

Addition Polymers. The most commonly referenced reaction of isocyanates iavolves their addition to polyhydroxyl, polyamine, or polycarboxyhc acid compounds to yield addition polymers. Due to the wide diversity of raw material characteristics and the broad range of functionahty, polyurethane polymers having a wide range of processiag and performance characteristics are available. [Pg.451]

The advent of newer polyurethane materials is expected to lead to a new generation of cardiovascular devices. The characteristics of polyurethanes, combined with newer manufacturing techniques, should translate into direct medical benefits for the physician, the hospital, and the patient. This field offers exciting growth opportunities. [Pg.184]

The avadabihty of PMDI also led to the development of polyurethane-modified isocyanurate (PUIR) foams by 1967. The PUIR foams have superior thermal stabiUty and combustibiUty characteristics, which extend the use temperature of insulation foams well above 150°C. The PUIR foams are used in pipe, vessel, and solar panel insulation glass-fiber-reinforced PUIR roofing panels having superior dimensional stabiUty have also been developed. More recently, inexpensive polyester polyols based on residues obtained in the production of dimethyl terephthalate (DMT) have been used in the formulation of rigid polyurethane and PUIR foams. [Pg.342]

These systems are dominated by the Vulkollan materials, whtch remain of importance because of their excellent load-bearing and, for a polyurethane, excellent heat-resisting characteristics. [Pg.785]

The one-shot polyethers now form the bulk of the flexible polyurethane foam now being manufactured. This is a result of the favourable economics of polyethers, particularly when reacted in a one-shot process, and because the polyethers generally produce foams of better cushioning characteristics. A typical formulation for producing a one-shot polyether foam will comprise... [Pg.794]

There is also growing interest in multi-phase systems in which hard phase materials are dispersed in softer polyether diols. Such hard phase materials include polyureas, rigid polyurethanes and urea melamine formaldehyde condensates. Some of these materials yield high-resilience foams with load deflection characteristics claimed to be more satisfactory for cushioning as well as in some cases improving heat resistance and flame retardancy. [Pg.808]

Thermoplastic polyester elastomers such as the Du Pont product Hytrel were developed later than the polyurethane materials, being first introduced in 1972. They have similar characteristics to the polyurethanes but there is an upward shift in the hardness range (i.e. the softest grades are not so soft, but the hardest grades are harder than the corresponding extreme grades in the polyurethanes). [Pg.879]

Certain polymers have come to be considered standard building blocks of the polyblends. For example, impact strength may be improved by using polycarbonate, ABS and polyurethanes. Heat resistance is improved by using polyphenylene oxide, polysulphone, PVC, polyester (PET and PBT) and acrylic. Barrier properties are improved by using plastics such as ethylene vinyl alchol (EVA). Some modem plastic alloys and their main characteristics are given in Table 1.2. [Pg.11]

Thermoplastic polyurethane (TPU) is a type of synthetic polymer that has properties between the characteristics of plastics and rubber. It belongs to the thermoplastic elastomer group. The typical procedure of vulcanization in rubber processing generally is not needed for TPU instead, the processing procedure for normal plastics is used. With a similar hardness to other elastomers, TPU has better elasticity, resistance to oil, and resistance to impact at low temperatures. TPU is a rapidly developing polymeric material. [Pg.137]

The FR characteristics of PCP and Anorin-38 were improved substantially by introducing bromine. When five bronine atoms were introduced by controlled bromi-nation, the resin (the product obtained was still fluid in nature and could be crosslinked by hexamine to get hard partially brominated PCP-PBPCP) showed excellent FR characteristics exhibiting self-extinguishing property and UL 94 V-0 grade when blended with polyethylene, NR, etc. There was excellent compatibility with polyolefins as well as with other polymers such as cellulose, polyurethane, etc. Table 13 shows the FR properties of NR-PBPCP. [Pg.428]

Improved polyurethane can he produced hy copolymerization. Block copolymers of polyurethanes connected with segments of isobutylenes exhibit high-temperature properties, hydrolytic stability, and barrier characteristics. The hard segments of polyurethane block polymers consist of 4RNHCOO)-n, where R usually contains an aromatic moiety. [Pg.343]

Polyurethane networks based on triisocyante and diisocyanate connected by segments consisting of polyisobutylene are rubbery and exhibit high temperature properties, hydrolyic stability, and barrier characteristics. ... [Pg.344]

Thermosetting epoxy and polyurethane chemically-cured liquid resins can provide, among other characteristics, superior abrasion resistance coatings. Solvent-free formulation applied by hot spray techniques can achieve film thicknesses of up to 5 mm. [Pg.671]


See other pages where Polyurethane characteristics is mentioned: [Pg.32]    [Pg.264]    [Pg.167]    [Pg.417]    [Pg.418]    [Pg.434]    [Pg.535]    [Pg.537]    [Pg.342]    [Pg.476]    [Pg.336]    [Pg.31]    [Pg.463]    [Pg.740]    [Pg.783]    [Pg.783]    [Pg.799]    [Pg.759]    [Pg.790]    [Pg.384]    [Pg.582]    [Pg.343]    [Pg.115]    [Pg.96]    [Pg.96]    [Pg.111]    [Pg.176]    [Pg.262]    [Pg.939]    [Pg.18]    [Pg.26]    [Pg.219]    [Pg.228]    [Pg.27]    [Pg.149]   
See also in sourсe #XX -- [ Pg.102 ]

See also in sourсe #XX -- [ Pg.6 , Pg.14 , Pg.201 , Pg.227 ]




SEARCH



Polyurethanes biodegradation characteristics

Polyurethanes degradation characteristics

Segmented polyurethanes characteristics

© 2024 chempedia.info