Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polypropylene environmental oxidation

Degradation of polyolefins such as polyethylene, polypropylene, polybutylene, and polybutadiene promoted by metals and other oxidants occurs via an oxidation and a photo-oxidative mechanism, the two being difficult to separate in environmental degradation. The general mechanism common to all these reactions is that shown in equation 9. The reactant radical may be produced by any suitable mechanism from the interaction of air or oxygen with polyolefins (42) to form peroxides, which are subsequentiy decomposed by ultraviolet radiation. These reaction intermediates abstract more hydrogen atoms from the polymer backbone, which is ultimately converted into a polymer with ketone functionahties and degraded by the Norrish mechanisms (eq. [Pg.476]

Environmental water samples to be analyzed for metals are best stored in quartz or Teflon containers. However, because these containers are expensive, polypropylene containers are often used. Borosilicate glass may also be used, but soft glass should be avoided because it can leach traces of metals into the water. If silver is to be determined, the containers should be light absorbing (dark colored). Samples should be preserved by adding concentrated nitric acid so that the pH of the water is less than two. The iron in well water samples, for example, will precipitate as iron oxide upon exposure to air and would be lost to the analysis if not for this acidification. [Pg.22]

Of prime importance to the continued growth of polypropylene are the stabilizer systems which must be used to protect the resin during processing, and during exposure of finished products to various environmental and use conditions. The weak tertiary carbon—hydrogen bonds in polypropylene make it particularly susceptible to degradation caused by heat, oxidation, process shearing, and ultraviolet radiation (24). [Pg.217]

A variety of methods for evaluating antioxidants in polypropylene has been developed during the past several years. Polymer producers, end-use manufacturers, additive suppliers, academicians, and others have developed widely disparate test methods, all of which presumably yield the same results—i.e., the test methods rate the antioxidants and antioxidant systems in the same relative order of effectiveness. Many of these test methods are useful tools in distinguishing unstabilized polymer, moderately stabilized polymer, and highly stabilized polymer systems. Today, all of the polypropylene producers offer highly stabilized polymers. Effective antioxidants are available from several additive suppliers. How does one select the best antioxidant or polymer formulation for a particular end use This paper compares the results obtained by various test methods used to evaluate the two basic types of oxidative stability, processing stability and end-use or environmental stability. The correlation or lack... [Pg.239]

Carbon-based sorbents are relatively new materials for the analysis of noble metal samples of different origin [78-84]. The separation and enrichment of palladium from water, fly ash, and road dust samples on oxidized carbon nanotubes (preconcentration factor of 165) [83] palladium from road dust samples on dithiocarbamate-coated fullerene Cso (sorption efficiency of 99.2 %) [78], and rhodium on multiwalled carbon nanotubes modified with polyacrylonitrile (preconcentration factor of 120) [80] are examples of the application of various carbon-based sorbents for extraction of noble metals from environmental samples. Sorption of Au(III) and Pd(ll) on hybrid material of multiwalled carbon nanotubes grafted with polypropylene amine dendrimers prior to their determination in food and environmental samples has recently been described [84]. Recent application of ion-imprinted polymers using various chelate complexes for SPE of noble metals such as Pt [85] and Pd [86] from environmental samples can be mentioned. Hydrophobic noble metal complexes undergo separation by extraction under cloud point extraction systems, for example, extraction of Pt, Pd, and Au with N, A-dihexyl-A -benzylthiourea-Triton X-114 from sea water and dust samples [87]. [Pg.377]

The development of processes to reduce environmental load is also discussed. Examples include lower-energy processes for isobutylene and polypropylene, the use of bio-reactors in a mercury-free process for a dyestuff intermediate, direct oxidation of MMA and a hydroperoxide process for the manufacture of resorcinol. [Pg.330]

OSi Specialties, a subsidiary of Witco, was nudged into action by the U. S. Environmental Protection Agency.53 The problem was loss of methyl and ethyl chloride in the wastewater from a process of making ethers from polyethylene oxide and polypropylene oxide. A complete study of all of the waste streams at the plant resulted in a solution that cost 600,000 dollars and saved 800,000 dollars. This was done by adding a unit that converted the excess methyl chloride from the process to methanol, which could be sold. An attorney for the company says, But if it hadn t made economic sense, we wouldn t have done it. If dimethyl carbonate could be used for the end-capping, there would be no waste salts produced and almost no wastewater. [Pg.503]

Chemical routes to polypropylene terephthalate-based fibers, which we have branded Sorona, use hazardous chemicals such as ethylene oxide and carbon monoxide and are subject to the environmental problems of a typical chemical process (Figure 7). We undertook the enormous challenge of producing 1,3-propanediol (3G) from glucose in one step as shown in Figure 8. [Pg.105]

Low molecular weight dicarboxylic acids, keto acids and hydroxy acids have been shown to form as photooxidation products of polyethylene and polypropylene. These are almost certainly formed by intramolecular reactions of alkylperoxyl and peracyl radicals shown typically in Scheme 3.7. Back-biting along the aliphatic chain gives rise to unstable hydroperoxides and the elimination of small molecular fragments. It will be seen in Chapter 5 that these low molar mass oxidation products, which are already present in the environment from natural sources, are the first point of microbial attack in the surface of environmentally degraded polymers, leading to oxidation initiated bioerosion (Chapter 5). [Pg.53]

In spite of some imeertainties in the individual steps of the HAS meehanism in polymer stabilization due to the speerfie effeets of the polymer matrix and the environmental stress, the HAS-based nitroxides are eonsidered the key intermediate in the HAS reaetivity meehanism. Detection and quantification of the formed nitroxides using ESRI spectroscopic technique has been exploited for confirmation of the primary transformation step in HAS mechanism [15, 16, 20], as a consequence of interactions of HAS with oxygenated radical and molecular products of polyolefins (5). Monitoring of the nitroxide development enables tracing of the oxidation process within the polymer matrix. Consequently it is also a tool for marking the heterogeneity of the oxidative transformation of semicrystalline carbon chain polymers [polypropylene (PP), polyethylenes (PE)] or amorphous polymers [copolymers of ethylene with norbomene, polystyrene (PS), high impart polystyrene (HIPS), acrylonitrile-butadiene-styrene polymer (ABS)]. [Pg.349]

Polymer/fullerene [Ceol nanocomposites can be considered environmentally friendly alternatives to some traditional flame retardants. The presence of Ceo can markedly delay thermal oxidative degradation and reduce the flammability of polypropylene at very low loadings. It can decrease the heat release rate of polymeric materials by trapping the free radicals created through thermal degradation and combustion, and subsequently forming three-dimensional gelled networks. This network can increase the melt viscosity and consequently slow down combustion. Furthermore, the incorporation of Qo does not affect the physical properties of the polymer. [Pg.309]


See other pages where Polypropylene environmental oxidation is mentioned: [Pg.354]    [Pg.178]    [Pg.697]    [Pg.697]    [Pg.244]    [Pg.215]    [Pg.339]    [Pg.359]    [Pg.742]    [Pg.239]    [Pg.31]    [Pg.36]    [Pg.82]    [Pg.314]    [Pg.97]    [Pg.673]    [Pg.427]    [Pg.754]    [Pg.220]    [Pg.274]    [Pg.97]    [Pg.217]    [Pg.127]    [Pg.320]    [Pg.70]    [Pg.611]    [Pg.474]    [Pg.157]    [Pg.1]    [Pg.68]    [Pg.68]    [Pg.32]    [Pg.56]    [Pg.157]    [Pg.274]    [Pg.54]    [Pg.110]    [Pg.80]   
See also in sourсe #XX -- [ Pg.3 , Pg.15 ]




SEARCH



Oxidation polypropylene

Polypropylene oxide

Polypropylene oxide, oxidation

© 2024 chempedia.info