Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stabilization of Polymer Systems

Rodriguez F, "Degradation and Stabilization of Polymer Systems", in his monography "Principles of Polymer Systems", Hemisphere Publishing Corporation, New York, 5th Ed, 2003, Chap. 11. [Pg.777]

Polyvinylpyrrolidone (PVP) is water-soluble polymer, whieh is widely used in various industries and agrieulture beeause of high inelination to the eomplex formation and eapaeity to stabilization of different systems. [Pg.47]

A surface is that part of an object which is in direct contact with its environment and hence, is most affected by it. The surface properties of solid organic polymers have a strong impact on many, if not most, of their apphcations. The properties and structure of these surfaces are, therefore, of utmost importance. The chemical stmcture and thermodynamic state of polymer surfaces are important factors that determine many of their practical characteristics. Examples of properties affected by polymer surface stmcture include adhesion, wettability, friction, coatability, permeability, dyeabil-ity, gloss, corrosion, surface electrostatic charging, cellular recognition, and biocompatibility. Interfacial characteristics of polymer systems control the domain size and the stability of polymer-polymer dispersions, adhesive strength of laminates and composites, cohesive strength of polymer blends, mechanical properties of adhesive joints, etc. [Pg.871]

Oligomerization of nucleobases can be advantageous to reinforce the H-bonding supramolecular motifs when supramacromolecular polymers are desired. Moreover the different interconverting outputs that may form by oligomerization define a dynamic polyfunctional diversity which may be extracted selectively under the intrinsic stability of the system or by interaction with external factors by polymerization in the solid state. [Pg.326]

The number of polymer particles is the prime determinant of the rate and degree of polymerization since it appears as the first power in both Eqs. 4-5 and 4-7. The formation (and stabilization) of polymer particles by both micellar nucleation and homogeneous nucleation involves the adsorption of surfactant from the micelles, solution, and monomer droplets. The number of polymer particles that can be stabilized is dependent on the total surface area of surfactant present in the system asS, where as is the interfacial surface area occupied by a surfactant molecule and S is the total concentration of surfactant in the system (micelles, solution, monomer droplets). However, N is also directly dependent on the rate of radical generation. The quantitative dependence of N on asS and R,- has been derived as... [Pg.362]

Table 15) highlights the stability of this system compared to the PS/MTO system (entry 6, Table 15), which shows a decrease in activity during recycling. This difference in behaviour may be due to the weaker interaction between MTO and the PS polymer, which is only accomplished by the physical envelopment of the benzene ring. The PVP/MTO combination was successfully used for other compounds of biological interest, such as ter-penes. Even highly sensitive terpenic epoxides, hke a-pinene oxide, can be obtained in excellent yields using polymer-supported MTO catalysts [73] (Scheme 20, Table 16). [Pg.169]

Chapiro, A. "Radiation Chemistry of Polymeric Systems" Interscience Wiley New York, 1902, p. 538 Schnabel, W. In "Aspects of Degradation and Stabilization of Polymers" Jellinek, H. H. G., Ed. Elsevier, Amsterdam, Oxford, New York, 1978, p. 159. [Pg.338]

The type of chosen polymer and additives most strongly influences the rheological and processing properties of plastisols. Plastisols are normally prepared from emulsion and suspension PVC which differ by their molecular masses (by the Fickentcher constant), dimensions and porosity of particles. Dimensions and shape of particles are important not only due to the well-known properties of dispersed systems (given by the formulas of Einstein, Mooney, Kronecker, etc.), but also due to the fact that these factors (in view of the small viscosity of plasticizer as a composite matrix ) influence strongly the sedimental stability of the system. The joint solution of the equations of sedimentation (precipitation) of particles by the action of gravity and of thermal motion according to Einstein and Smoluchowski leads 37,39) to the expression for the radius of the particles, r, which can not be precipitated in the dispersed system of an ideal plastisol. This expression has the form ... [Pg.89]

The colloidal stability of polymer dispersion prepared by the emulsion copolymerization of R-(EO)n-MA was observed to increase with increasing EO number in the macromonomer [42, 96]. Thus C12-(EO)9-MA did not produce stable polymer latexes, i.e., the coagulum was observed during polymerization. This monomer, however, was efficient in the emulsion copolymerization with BzMA (see below). The C12-(EO)20-MA, however, appears to have the most suitable hydrophilic-hydrophobic balance to make stable emulsions. The relative reactivity of macromonomer slightly decreases with increasing EO number in macromonomer. The most hydrophilic macromonomer with co-methyl terminal, Cr(EO)39-MA, could not disperse the monomer so that the styrene droplets coexisted during polymerization. The maximum rate of polymerization was observed at low conversions and decreased with increasing conversion. The decrease in the rate may be attributed to the decrease of monomer content in the particles (Table 2). In the Cr(EO)39-MA/St system the macromonomer is soluble in water and styrene is located in the monomer droplets. Under such conditions the polymerization in St monomer droplets may contribute to the increase in r2 values. [Pg.42]

Chemg, J.Y., van de Wetering, P., Talsma, H., Crommelin, D.J. and Hennink, W.E. (1999b) Stabilization of polymer-based gene delivery systems. Int. J. Pharm., 183, 25-28. [Pg.166]


See other pages where Stabilization of Polymer Systems is mentioned: [Pg.477]    [Pg.479]    [Pg.481]    [Pg.483]    [Pg.485]    [Pg.487]    [Pg.489]    [Pg.491]    [Pg.493]    [Pg.495]    [Pg.497]    [Pg.499]    [Pg.501]    [Pg.503]    [Pg.505]    [Pg.477]    [Pg.479]    [Pg.481]    [Pg.483]    [Pg.485]    [Pg.487]    [Pg.489]    [Pg.491]    [Pg.493]    [Pg.495]    [Pg.497]    [Pg.499]    [Pg.501]    [Pg.503]    [Pg.505]    [Pg.56]    [Pg.71]    [Pg.75]    [Pg.237]    [Pg.13]    [Pg.144]    [Pg.245]    [Pg.519]    [Pg.18]    [Pg.139]    [Pg.178]    [Pg.78]    [Pg.157]    [Pg.209]    [Pg.218]    [Pg.192]    [Pg.347]    [Pg.244]    [Pg.246]    [Pg.90]    [Pg.150]    [Pg.64]    [Pg.233]    [Pg.167]   


SEARCH



Polymer stabilization

Polymer stabilization stabilizers

Stability of polymers

Stabilization of polymers

Stabilizer polymer

Stabilizer systems

Stabilizing polymers

System stability

© 2024 chempedia.info