Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly-L-lysine polypeptide

Historically, after the development of oligopeptide-based vesicles, several groups developed and characterized vesicles using polypeptide hybrid systems consisting of polypeptide and synthetic polymer blocks [17-19]. Soon thereafter, vesicles formed entirely from polypeptides, such as poly(L-lysine)-h-poly(L-leucine) and poly(L-lysine)-h-poly(L-glutamate), were developed [20, 21]. This review will focus on recent developments in the formation of vesicles composed of polypeptide hybrid or polypeptide systems, as well as the potential promise of these systems as effective dmg delivery vehicles. A specific example of a polypeptide-based vesicle is shown in Fig. 1, where the hydrophobic segment is a-helical and the hydrophilic segment is a random coil. [Pg.120]

Fig. 1 Vesicle construct formed from poly(L-lysine)-i)-poly(L-leucme) polypeptides where the poly(L-leucine) block corresponds to the a-helical hydrophobic segments and the poly (L-lysine) block corresponds to the random coil hydrophilic segments. Note that this is one specific example and not all vesicle constructs have a-helical and random coil blocks. Moreover, the amphiphilic copolymer can be comprised of either a pure block copolypeptide or a macromolecule consisting of a polypeptide and another type of polymer. Adapted from [20] with permission. Copyright 2010 American Chemical Society... Fig. 1 Vesicle construct formed from poly(L-lysine)-i)-poly(L-leucme) polypeptides where the poly(L-leucine) block corresponds to the a-helical hydrophobic segments and the poly (L-lysine) block corresponds to the random coil hydrophilic segments. Note that this is one specific example and not all vesicle constructs have a-helical and random coil blocks. Moreover, the amphiphilic copolymer can be comprised of either a pure block copolypeptide or a macromolecule consisting of a polypeptide and another type of polymer. Adapted from [20] with permission. Copyright 2010 American Chemical Society...
The Jing group investigated their poly(L-lysine)-6-poly(L-phenylalanine) vesicles for the development of synthetic blood, since PEG-lipid vesicles were previously used to encapsulate hemoglobin to protect it from oxidation and to increase circulation time. They extended this concept and demonstrated that functional hemoglobin could be encapsulated into their vesicles. The same polypeptide material was also used to complex DNA, which caused the vesicles to lose their... [Pg.130]

Poly-L-lysine and polyglutamic acid Poly-L-aspartic acid Polypeptide-mustard conjugates HPMA... [Pg.568]

Although the ROA spectra of typical /1-sheet proteins share some of the features observed in /3-sheet poly-L-lysine, there are also some differences, especially in the amide I region. This is because the /1-sheet in proteins tends to be twisted and irregular, whereas that in polypeptides tends to be extended, multistranded and relatively flat. [Pg.88]

Patwardhan, S.V., Mukherjee, N. and Clarson, S.J. (2001) The use of poly-L-lysine to form novel silica morphologies and the role of polypeptides in biosilicification. Journal of Inorganic and Organometcdlic Polymers, 11, 193-198. [Pg.105]

The most common carrier proteins in use today are keyhole limpet hemocyanin (KLH MW 4.5 X 105 to 1.3 X 107), BSA (MW 67,000), aminoethylated (or cationized) BSA (cBSA), thyroglobulin (MW 660,000), ovalbumin (OVA MW 43,000), and various toxoid proteins, including tetanus toxoid and diphtheria toxoid. Other proteins occasionally used include myoglobin, rabbit serum albumin, immunoglobulin molecules (particularly IgG) from bovine or mouse sera, tuberculin purified protein derivative, and synthetic polypeptides such as poly-L-lysine and poly-L-glutamic acid. [Pg.748]

The relevance of such a diastereomer discrimination to the transport of chiral molecules, such as pharmaceuticals or biochemicals, through hydrophobic barriers, such as cell membranes, is obvious. Furthermore, since poly(DL-lysine) followed the same general pattern of behavior displayed by the other three samples, the observed surface-pressure changes probably were not due to helicalization of the polypeptide. Whereas poly(L-lysine) and poly(D-lysine) form helices with opposite screw sense, the random copolymer poly(DL-lysine) is to a large extent prevented from forming helices. [Pg.250]

In both cases the top layer of these layered polyelectrolyte films contains many ion sites that can bind redox ions by ion exchange vdth the electrolyte solution. Homo polypeptides such as poly(L-lysine) and poly(L-glutamic add) have been employed to form layered polyelectrolyte films with Fe(CN)6 " electrostatically adsorbed onto ammonium sites in poly(lysine) [45]. Modified electrodes with polyelectrolytes mono-layers have also been deposited using the Langmuir-Blodgett technique [46-48]. [Pg.61]

Under a variety of conditions, plasmid DNA undergoes a dramatic compaction in the presence of condensing agents such as multivalent cations and cationic polymers. Naked DNA coils, typically with a hydrodynamic size of hundreds of nanometers, after condensation it may become only tens of nanometer in size. Contrary to proteins which show a unique tertiary structure, DNA coils do not condense into unique compact structure. Cationic polymers execute their gene carrier function by their condensation effect on gene materials and, furthermore, their protection effect on DNA from nuclease digestion. Currently, the most widely used cationic polymers in research include linear or branched PEI (poly (ethyleneimine) (161-165), polypeptides such as PLL (poly-L-lysine) (166-169), PLA (poly-L-arginine) (170). [Pg.353]

Spin-lattice relaxation times and 13C chemical shifts were used to study conformational changes of poly-L-lysine, which undergoes a coil-helix transition in a pH range from 9 to 11. In order to adopt a stable helical structure, a minimum number of residues for the formation of hydrogen bonds between the C = 0 and NH backbone groups is necessary therefore for the polypeptide dodecalysine no helix formation was observed. Comparison of the pH-dependences of the 13C chemical shifts of the carbons of poly-L-lysine and (L-Lys)12 shows very similar values for both compounds therefore downfield shifts of the a, / and peptide carbonyl carbons can only be correlated with caution with helix formation and are mainly due to deprotonation effects. On the other hand, a sharp decrease of the 7] values of the carbonyl and some of the side chain carbons is indicative for helix formation [854]. [Pg.437]

Polypeptides adopting a 3-structure exhibit CD spectra, the characteristic features of which are a negative band at about 216 nm ([ ] = -18,000) and a positive band of comparable magnitude near 195 nm (Figure 2). However, the CD spectra of (3-struc-tures show much more pronounced variations with solvent and amino acid residues than those of the a-helix, both in amplitude and in the position of the bands. In the presence of sodium dodecyl sulfate, the (3-form of poly(L-lysine), though still a 13-structure by infrared criteria, gives a 218 nm CD band only about half as large as that in the absence of the surfactant.[11]... [Pg.403]


See other pages where Poly-L-lysine polypeptide is mentioned: [Pg.639]    [Pg.129]    [Pg.174]    [Pg.183]    [Pg.111]    [Pg.377]    [Pg.639]    [Pg.129]    [Pg.174]    [Pg.183]    [Pg.111]    [Pg.377]    [Pg.551]    [Pg.211]    [Pg.15]    [Pg.17]    [Pg.123]    [Pg.123]    [Pg.125]    [Pg.128]    [Pg.13]    [Pg.83]    [Pg.89]    [Pg.93]    [Pg.98]    [Pg.108]    [Pg.133]    [Pg.139]    [Pg.235]    [Pg.250]    [Pg.201]    [Pg.350]    [Pg.74]    [Pg.276]    [Pg.436]    [Pg.287]    [Pg.29]    [Pg.310]    [Pg.159]    [Pg.180]    [Pg.403]    [Pg.411]   
See also in sourсe #XX -- [ Pg.213 , Pg.214 ]




SEARCH



L Lysine

Lysine polypeptide

Poly-L-lysine

Poly-lysine

Poly[l-

Polypeptide poly

© 2024 chempedia.info