Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly sheets

In the case Z3 > 0, the central equilibrium state is stable for /jl e D3. For Z3 < 0, the character of the stability region becomes less trivial namely, it becomes poly-sheeted (see Fig. 11.2.13). It should be noted that the stability boundary is not smooth at the origin. [Pg.183]

The earliest SFA experiments consisted of bringing the two mica sheets into contact m a controlled atmosphere (figure Bl.20.61 or (confined) liquid medium [14, 27, 73, 74 and 75]. Later, a variety of surfactant layers [76, 77], polymer surfaces [5, 9, fO, L3, 78], poly electrolytes [79], novel materials [ ] or... [Pg.1738]

Poly(methyl methacrylate) Cast sheet Impact- modified Heat- resistant ... [Pg.1028]

Acrylics. Acetone is converted via the intermediate acetone cyanohydrin to the monomer methyl methacrylate (MMA) [80-62-6]. The MMA is polymerized to poly(methyl methacrylate) (PMMA) to make the familiar clear acryUc sheet. PMMA is also used in mol ding and extmsion powders. Hydrolysis of acetone cyanohydrin gives methacrylic acid (MAA), a monomer which goes direcdy into acryUc latexes, carboxylated styrene—butadiene polymers, or ethylene—MAA ionomers. As part of the methacrylic stmcture, acetone is found in the following major end use products acryUc sheet mol ding resins, impact modifiers and processing aids, acryUc film, ABS and polyester resin modifiers, surface coatings, acryUc lacquers, emulsion polymers, petroleum chemicals, and various copolymers (see METHACRYLIC ACID AND DERIVATIVES METHACRYLIC POLYMERS). [Pg.99]

Polyester sheet products may be produced from amorphous poly(ethylene terephalate) (PET) or partiaHy crystallized PET. Acid-modified (PETA) and glycol modified (PETG) resins are used to make ultraclear sheet for packaging. Poly(butylene terephthalate) (PBT) has also been used in sheet form. Liquid-crystal polyester resins are recent entries into the market for specialty sheet. They exhibit great strength, dimensional stabHity, and inertness at temperatures above 250°C (see Polyesters,thermoplastic). [Pg.377]

Polystyrene. Polystyrene (PS) film and sheet has the third largest production volume, behind only the polyethylenes and poly(vinyl chloride). [Pg.378]

Quenched sheet is pulled horizontally from the stack and is then either wound on roUs or sheared into sheets of the required dimension. Among the polymers made into sheet this way are the polyolefins, poly(vinyl chloride), amorphous polyester, polycarbonate, and polyarjiate. [Pg.379]

Table 6 shows the sales estimates for principal film and sheet products for the year 1990 (14). Low density polyethylene films dominate the market in volume, followed by polystyrene and the vinyls. High density polyethylene, poly(ethylene terephthalate), and polypropylene are close in market share and complete the primary products. A number of specialty resins are used to produce 25,000—100,000 t of film or sheet, and then there are a large number of high priced, high performance materials that serve niche markets. The original clear film product, ceUophane, has faUen to about 25,000 t in the United States, with only one domestic producer. Table 7 Hsts some of the principal film and sheet material manufacturers in the United States. Table 6 shows the sales estimates for principal film and sheet products for the year 1990 (14). Low density polyethylene films dominate the market in volume, followed by polystyrene and the vinyls. High density polyethylene, poly(ethylene terephthalate), and polypropylene are close in market share and complete the primary products. A number of specialty resins are used to produce 25,000—100,000 t of film or sheet, and then there are a large number of high priced, high performance materials that serve niche markets. The original clear film product, ceUophane, has faUen to about 25,000 t in the United States, with only one domestic producer. Table 7 Hsts some of the principal film and sheet material manufacturers in the United States.
In 1954 the surface fluorination of polyethylene sheets by using a soHd CO2 cooled heat sink was patented (44). Later patents covered the fluorination of PVC (45) and polyethylene bottles (46). Studies of surface fluorination of polymer films have been reported (47). The fluorination of polyethylene powder was described (48) as a fiery intense reaction, which was finally controlled by dilution with an inert gas at reduced pressures. Direct fluorination of polymers was achieved in 1970 (8,49). More recently, surface fluorinations of poly(vinyl fluoride), polycarbonates, polystyrene, and poly(methyl methacrylate), and the surface fluorination of containers have been described (50,51). Partially fluorinated poly(ethylene terephthalate) and polyamides such as nylon have excellent soil release properties as well as high wettabiUty (52,53). The most advanced direct fluorination technology in the area of single-compound synthesis and synthesis of high performance fluids is currently practiced by 3M Co. of St. Paul, Minnesota, and by Exfluor Research Corp. of Austin, Texas. [Pg.278]

Thermoform able sheet may be mono- or multilayer with the latter produced by lamination or coextmsion. Multilayers are employed to incorporate high oxygen-barrier materials between stmctural or high water-vapor barrier plastics. Both ethylene vinyl alcohol copolymers and poly(vinyhdene chloride) (less often) are used as high oxygen-barrier interior layers with polystyrene or polypropylene as the stmctural layers, and polyolefin on the exterior for sealing. [Pg.454]

Table 4. Electrical Properties of 6.35-mm Thick Poly(methyl methacrylate) Sheet ... Table 4. Electrical Properties of 6.35-mm Thick Poly(methyl methacrylate) Sheet ...
Bulk Polymerization. This is the method of choice for the manufacture of poly(methyl methacrylate) sheets, rods, and tubes, and molding and extmsion compounds. In methyl methacrylate bulk polymerization, an auto acceleration is observed beginning at 20—50% conversion. At this point, there is also a corresponding increase in the molecular weight of the polymer formed. This acceleration, which continues up to high conversion, is known as the Trommsdorff effect, and is attributed to the increase in viscosity of the mixture to such an extent that the diffusion rate, and therefore the termination reaction of the growing radicals, is reduced. This reduced termination rate ultimately results in a polymerization rate that is limited only by the diffusion rate of the monomer. Detailed kinetic data on the bulk polymerization of methyl methacrylate can be found in Reference 42. [Pg.265]

Fig. 2. Continuous process for manufacturing poly(methyl methacrylate) plastic sheet. Fig. 2. Continuous process for manufacturing poly(methyl methacrylate) plastic sheet.
Plastic Sheet. Poly(methyl methacrylate) plastic sheet is manufactured in a wide variety of types, including cleat and colored transparent, cleat and colored translucent, and colored semiopaque. Various surface textures ate also produced. Additionally, grades with improved weatherabiUty (added uv absorbers), mat resistance, crazing resistance, impact resistance, and flame resistance ate available. Selected physical properties of poly(methyl methacrylate) sheet ate Hsted in Table 12 (102). [Pg.269]

Uses. Phthabc anhydride is used mainly in plasticizers, unsaturated polyesters, and alkyd resins (qv). PhthaUc plasticizers consume 54% of the phthahc anhydride in the United States (33). The plasticizers (qv) are used mainly with poly(vinyl chloride) to produce flexible sheet such as wallpaper and upholstery fabric from normally rigid polymers. The plasticizers are of two types diesters of the same monohydric alcohol such as dibutyl phthalate, or mixed esters of two monohydric alcohols. The largest-volume plasticizer is di(2-ethylhexyl) phthalate [117-81-7] which is known commercially as dioctyl phthalate (DOP) and is the base to which other plasticizers are compared. The important phthahc acid esters and thek physical properties are Hsted in Table 12. The demand for phthahc acid in plasticizers is naturally tied to the growth of the flexible poly(vinyl chloride) market which is large and has been growing steadily. [Pg.485]


See other pages where Poly sheets is mentioned: [Pg.175]    [Pg.561]    [Pg.1298]    [Pg.246]    [Pg.143]    [Pg.400]    [Pg.172]    [Pg.233]    [Pg.373]    [Pg.377]    [Pg.377]    [Pg.378]    [Pg.378]    [Pg.378]    [Pg.381]    [Pg.299]    [Pg.523]    [Pg.71]    [Pg.72]    [Pg.252]    [Pg.63]    [Pg.254]    [Pg.259]    [Pg.261]    [Pg.265]    [Pg.265]    [Pg.265]    [Pg.265]    [Pg.270]    [Pg.16]    [Pg.17]    [Pg.451]    [Pg.292]    [Pg.306]   
See also in sourсe #XX -- [ Pg.206 ]




SEARCH



Poly Sheet Extrusion

Poly first commercial sheet

Poly pleated sheet conformations

Poly sheeting

Poly textile sheets

© 2024 chempedia.info