Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polypeptide acid, residues

Section 27 18 In the Memfield method the carboxyl group of an ammo acid is anchored to a solid support and the chain extended one ammo acid at a time When all the ammo acid residues have been added the polypeptide is removed from the solid support... [Pg.1152]

Polyethylene (Section 6 21) A polymer of ethylene Polymer (Section 6 21) Large molecule formed by the repeti tive combination of many smaller molecules (monomers) Polymerase chain reaction (Section 28 16) A laboratory method for making multiple copies of DNA Polymerization (Section 6 21) Process by which a polymer is prepared The principal processes include free radical cationic coordination and condensation polymerization Polypeptide (Section 27 1) A polymer made up of many (more than eight to ten) amino acid residues Polypropylene (Section 6 21) A polymer of propene Polysaccharide (Sections 25 1 and 25 15) A carbohydrate that yields many monosacchande units on hydrolysis Potential energy (Section 2 18) The energy a system has ex elusive of Its kinetic energy... [Pg.1291]

Short chains of amino acid residues are known as di-, tri-, tetrapeptide, and so on, but as the number of residues increases the general names oligopeptide and polypeptide are used. When the number of chains grow to hundreds, the name protein is used. There is no definite point at which the name polypeptide is dropped for protein. Twenty common amino acids appear regularly in peptides and proteins of all species. Each has a distinctive side chain (R in Figure 45.3) varying in size, charge, and chemical reactivity. [Pg.331]

Factors controlling calcium homeostasis are calcitonin, parathyroid hormone(PTH), and a vitamin D metabolite. Calcitonin, a polypeptide of 32 amino acid residues, mol wt - SGOO, is synthesized by the thyroid gland. Release is stimulated by small increases in blood Ca " concentration. The sites of action of calcitonin are the bones and kidneys. Calcitonin increases bone calcification, thereby inhibiting resorption. In the kidney, it inhibits Ca " reabsorption and increases Ca " excretion in urine. Calcitonin operates via a cyclic adenosine monophosphate (cAMP) mechanism. [Pg.376]

Parathyroid hormone, a polypeptide of 83 amino acid residues, mol wt 9500, is produced by the parathyroid glands. Release of PTH is activated by a decrease of blood Ca " to below normal levels. PTH increases blood Ca " concentration by increasing resorption of bone, renal reabsorption of calcium, and absorption of calcium from the intestine. A cAMP mechanism is also involved in the action of PTH. Parathyroid hormone induces formation of 1-hydroxylase in the kidney, requited in formation of the active metabolite of vitamin D (see Vitamins, vitamin d). [Pg.376]

Polypeptide Synthesis and Analysis. Sihca or controUed-pore glass supports treated with (chloromethyl)phenylethyltrimethoxysilane [68128-25-6] or its derivatives are replacing chloromethylated styrene—divinylbenzene (Merrifield resin) as supports in polypeptide synthesis. The sdylated support reacts with the triethyl ammonium salt of a protected amino acid. Once the initial amino acid residue has been coupled to the support, a variety of peptide synthesis methods can be used (34). At the completion of synthesis, the anchored peptide is separated from the support with hydrogen bromide in acetic acid (see Protein engineering Proteins). [Pg.73]

Protein Components. The simplest picture of the proteinaceous components is one of polypeptides, which are composed of a-amino acid residues. It is estimated that wool contains about 170 different types of polypeptides varying in molecular mass from below 10,000 to greater than 50,000 (34). Complete acid hydrolysis of wool yields 18 amino acids, the relative amounts of which vary considerably from one wool to another. Typical figures for two different samples of wool are given in Table 7. [Pg.342]

Polypeptides. These are a string of a-amino acids usually with the natural 5(L) [L-cysteine is an exception and has the R absolute configuration] or sometimes "unnatural" 7f(D) configuration at the a-carbon atom. They generally have less than -100 amino acid residues. They can be naturally occurring or, because of their small size, can be synthesised chemically from the desired amino acids. Their properties can be very similar to those of small proteins. Many are commercially available, can be custom made commercially or locally with a peptide synthesiser. They are purified by HPLC and can be used without further purification. Their purity can be checked as described under proteins. [Pg.560]

In this way each amino acid residue is associated with two conformational angles and y. Since these are the only degrees of freedom, the conformation of the whole main chain of the polypeptide is completely determined when the ([) and y angles for each amino acid are defined with high accuracy. [Pg.8]

Figure 4.5 The polypeptide chain of the enzyme pyruvate kinase folds into several domains, one of which is an a/p barrel (red). One of the loop regions in this barrel domain is extended and comprises about 100 amino acid residues that fold into a separate domain (blue) built up from antiparallel P strands. The C-terminal region of about 140 residues forms a third domain (green), which is an open twisted a/p structure. Figure 4.5 The polypeptide chain of the enzyme pyruvate kinase folds into several domains, one of which is an a/p barrel (red). One of the loop regions in this barrel domain is extended and comprises about 100 amino acid residues that fold into a separate domain (blue) built up from antiparallel P strands. The C-terminal region of about 140 residues forms a third domain (green), which is an open twisted a/p structure.
Carboxypeptidases are zinc-containing enzymes that catalyze the hydrolysis of polypeptides at the C-terminal peptide bond. The bovine enzyme form A is a monomeric protein comprising 307 amino acid residues. The structure was determined in the laboratory of William Lipscomb, Harvard University, in 1970 and later refined to 1.5 A resolution. Biochemical and x-ray studies have shown that the zinc atom is essential for catalysis by binding to the carbonyl oxygen of the substrate. This binding weakens the C =0 bond by... [Pg.60]

The first example is the plasma-borne retinol-binding protein, RBP, which is a single polypeptide chain of 182 amino acid residues. This protein is responsible for transporting the lipid alcohol vitamin A (retinol) from its storage site in the liver to the various vitamin-A-dependent tissues. It is a disposable package in the sense that each RBP molecule transports only a single retinol molecule and is then degraded. [Pg.68]

In summary, the whole molecule has almost 1600 amino acid residues. It is composed of four identical polypeptide chains, each of which is folded into a superbarrel with 24 p strands (Figure 5.8). These 24 p strands are arranged in six similar motifs, each of which contains four P strands that form the blades of a propeller-Iike structure. [Pg.72]

There are at least three different classes of crystallins. The a and (3 are heterogeneous assemblies of different subunits specified by different genes, whereas the gamma (y) crystallins are monomeric proteins with a polypeptide chain of around 170 amino acid residues. The structure of one such Y crystallin was determined in the laboratory of Tom Blundell in London to 1.9 A resolution. A picture of this molecule generated from a graphics display is shown in Figure 5.11. [Pg.74]

Figure S.ll A computer-generated diagram of the structure of y crystallin comprising one polypeptide chain of 170 amino acid residues. The diagram illustrates that the polypeptide chain is arranged in two domains (blue and red). Only main chain (N, C , Ca) atoms and no side chains are shown. Figure S.ll A computer-generated diagram of the structure of y crystallin comprising one polypeptide chain of 170 amino acid residues. The diagram illustrates that the polypeptide chain is arranged in two domains (blue and red). Only main chain (N, C , Ca) atoms and no side chains are shown.
Figure 8.3 The DNA-binding protein Cro from bacteriophage lambda contains 66 amino acid residues that fold into three a helices and three P strands, (a) A plot of the Ca positions of the first 62 residues of the polypeptide chain. The four C-terminal residues are not visible in the electron density map. (b) A schematic diagram of the subunit structure. a helices 2 and 3 that form the helix-turn-helix motif ate colored blue and red, respectively. The view is different from that in (a), [(a) Adapted from W.F. Anderson et al., Nature 290 754-758, 1981. (b) Adapted from D. Ohlendorf et al., /. Mol. Biol. 169 757-769, 1983.]... Figure 8.3 The DNA-binding protein Cro from bacteriophage lambda contains 66 amino acid residues that fold into three a helices and three P strands, (a) A plot of the Ca positions of the first 62 residues of the polypeptide chain. The four C-terminal residues are not visible in the electron density map. (b) A schematic diagram of the subunit structure. a helices 2 and 3 that form the helix-turn-helix motif ate colored blue and red, respectively. The view is different from that in (a), [(a) Adapted from W.F. Anderson et al., Nature 290 754-758, 1981. (b) Adapted from D. Ohlendorf et al., /. Mol. Biol. 169 757-769, 1983.]...
Many biochemical and biophysical studies of CAP-DNA complexes in solution have demonstrated that CAP induces a sharp bend in DNA upon binding. This was confirmed when the group of Thomas Steitz at Yale University determined the crystal structure of cyclic AMP-DNA complex to 3 A resolution. The CAP molecule comprises two identical polypeptide chains of 209 amino acid residues (Figure 8.24). Each chain is folded into two domains that have separate functions (Figure 8.24b). The larger N-terminal domain binds the allosteric effector molecule, cyclic AMP, and provides all the subunit interactions that form the dimer. The C-terminal domain contains the helix-tum-helix motif that binds DNA. [Pg.146]

The serine proteinases all have the same substrate, namely, polypeptide chains of proteins. However, different members of the family preferentially cleave polypeptide chains at sites adjacent to different amino acid residues. The structural basis for this preference lies in the side chains that line the substrate specificity pocket in the different enzymes. [Pg.212]

The Gp polypeptide chain has about 350 amino acid residues whereas the y chain has only about 70 residues. There are small variations in these lengths between species and between different gene products within the same species, but all known p chains and y chains show significant sequence... [Pg.261]

The molecular basis for quasi-equivalent packing was revealed by the very first structure determination to high resolution of a spherical virus, tomato bushy stunt virus. The structure of this T = 3 virus was determined to 2.9 A resolution in 1978 by Stephen Harrison and co-workers at Harvard University. The virus shell contains 180 chemically identical polypeptide chains, each of 386 amino acid residues. Each polypeptide chain folds into distinct modules an internal domain R that is disordered in the structure, a region (a) that connects R with the S domain that forms the viral shell, and, finally, a domain P that projects out from the surface. The S and P domains are joined by a hinge region (Figure 16.8). [Pg.331]

Polypeptide (Section 27.1) A polymer made up of many (more than eight to ten) amino acid residues. [Pg.1291]

Peptide is the name assigned to short polymers of amino acids. Peptides are classified by the number of amino acid units in the chain. Each unit is called an amino acid residue, the word residue denoting what is left after the release of HgO when an amino acid forms a peptide link upon joining the peptide chain. Dipeptides have two amino acid residues, tripeptides have three, tetrapeptides four, and so on. After about 12 residues, this terminology becomes cumbersome, so peptide chains of more than 12 and less than about 20 amino acid residues are usually referred to as oligopeptides, and, when the chain exceeds several dozen amino acids in length, the term polypeptide is used. The distinctions in this terminology are not precise. [Pg.110]

Amino acid analysis itself does not directly give the number of residues of each amino acid in a polypeptide, but it does give amounts from which the percentages or ratios of the various amino acids can be obtained (Table 5.2). If the molecular weight and the exact amount of the protein analyzed are known (or the number of amino acid residues per molecule is known), the molar ratios of amino acids in the protein can be calculated. Amino acid analysis provides no information on the order or sequence of amino acid residues in the polypeptide chain. Because the polypeptide chain is unbranched, it has only two ends, an amino-terminal or N-terminal end and a carboxyl-terminal or C-termuial end. [Pg.113]


See other pages where Polypeptide acid, residues is mentioned: [Pg.332]    [Pg.2821]    [Pg.536]    [Pg.65]    [Pg.54]    [Pg.239]    [Pg.209]    [Pg.485]    [Pg.73]    [Pg.503]    [Pg.562]    [Pg.371]    [Pg.36]    [Pg.76]    [Pg.89]    [Pg.90]    [Pg.129]    [Pg.132]    [Pg.284]    [Pg.288]    [Pg.293]    [Pg.348]    [Pg.352]    [Pg.388]    [Pg.1129]    [Pg.112]    [Pg.113]   
See also in sourсe #XX -- [ Pg.33 ]




SEARCH



Acidic residues

© 2024 chempedia.info