Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymeric surfactants multiple emulsions

Y. Sela, Y. Magdassi, and N. Garti Polymeric Surfactants Based on PolysUoxanes-Graft-Poly(Oxyethylene) for Stabilization of Multiple Emulsions. Colloids Surfaces 83, 143 (1993). [Pg.198]

The nature of entrapped materials may have a bearing on the stability of the system. Due to the nature of the multiple emulsion, the middle phase may act as an osmotic reservoir, thus virtually all additions to this phase will set up osmotic gradients. This might include high concentrations of surfactant. To this end polymeric microspheres have been used as the internal reservoir when osmotic transfer of water will not compromise stability. [Pg.366]

All of the above processes are influenced by the nature of the two emulsifiers used to prepare the multiple emulsion. Most reports on multiple emulsions are based on conventional nonionic surfactants, but unfortunately most of these surfactant systems produce multiple emulsions with Hmited shelf-Uves, particularly if the system is subjected to large temperature variations. During the past few years, multiple emulsions have been formulated using polymeric surfactants for both the primary and multiple emulsion preparation. These polymeric surfactants proved to be superior over conventional nonionic surfactants in maintaining the physical stability of the multiple emulsion, such that today they may be applied successfully to the formulation of agrochemical multiple emulsions. The results obtained using these polymeric surfactants offer several potential applications in formulations. The key in the latter cases is to use polymeric surfactants that are approved by the FDA for pharmacy and food, by the CTA for cosmetics, and by the EPA for agrochemicals. [Pg.234]

Another important use of the PHS-PEO-PHS block copolymer is the formation of a viscoelastic film around water droplets [11, 12] this results from the dense packing of the molecule at the W/O interface, which leads to an appreciable interfacial viscosity. The viscoelastic film prevents transport of water from the internal water droplets in the multiple emulsion drop to the external aqueous medium, and this ensures the long-term physical stability of the multiple emulsion when using polymeric surfactants. The viscoelastic film can also reduce the transport of any a.i. in the internal water droplets to the external phase. This is desirable in many cases when protection of the ingredient in the internal aqueous droplets is required and release is provided on application of the multiple emulsion. [Pg.244]

It should be emphasised that polymeric surfactants prevent the coalescence of water droplets in the multiple emulsion drops, as well as coalescence of the latter drops themselves. This is due to the interfacial rheology of the polymeric surfactant films. As a result of the strong lateral repulsion between the stabilising chains at the interface (PHS chains at the W/O interface and PEO chains at the O/W interface), these films resist deformation under shear and hence produce a viscoelastic film. On approach of the two droplets, this film prevents deformation of the interface so as to prevent coalescence. [Pg.244]

Examples of Multiple Emulsions Using Polymeric Surfactants... [Pg.246]

The above multiple emulsion was prepared under the same conditions except that Carbopol 980 was used as a thickener (gel). In this case, no MgS04 was added as the carbopol gel was affected by electrolytes. The aqueous PEF127 polymeric surfactant solution was prepared by dissolving 2g of the polymer in 23 g water ... [Pg.247]

Tadros TF, Taelman MC, Dederen JC. Multiple emulsions with polymeric surfactants. In Grossiord JL, Seiller M, eds. Multiple Emulsions Structure, Properties and Applications. Paris Editions de Sante, 1998 117-137. [Pg.434]

One may list a large number of surface chemical phenomena that are crucial in the preparation of more complex systems such as multiple emulsions and microcapsules. In the first case, the formulation is a complex system of an emulsion in an emulsion , with the most common being a water-in-oil-in-water (W/O/W) multiple emulsion, which requires the preparation of a stable W/O emulsion that is further emulsified into an aqueous solution of another surfactant to produce the final system. Microencapsulation is a process whereby the active ingredient is surrounded by a polymer shell that allows the controlled and slow release of the active. The most common procedure for encapsulation is interfacial polymerization, whereby two monomers are allowed to react at the interface (by condensation) to produce the... [Pg.73]

EC microcapsules containing Rosemary oil or limonene were obtained by phase separation method. According to this procedure, EC microcapsules without oil could also be produced. This could be explained due to EC inter cial activity, which stabilizes the formed emulsion. Surfactant-fiee multiple emulsions using EC as a polymeric emulsifier have already been reported by Melzer and collaborators [8]. From the scanning electron micrographs shown in Fig. 1 it is observed that EC microc g)sules had regular spherical sh, the size of microcapsules varied and that the surface was porous. [Pg.228]

Choudhary G., Kumar J., Waha S., Parsad R., Parmar B.S., Development of controlled release formulations of carbofuran and evaluation of their efficacy against Meloidogyne incognita, J. Agric. Food Chem., 54(13), 2006,4727-4733. Dhanorkar V.T., Gogte B.B., Dorle A.K., Formation and stability studies of multiple (w/o/w) emulsions prepared with newly synthesized rosin-based polymeric surfactants, Drug Dev. Ind. Pharm., 27(6), 2001, 591-598. [Pg.88]

In Chapter 3, the solution and surface properties of a relatively new class of material, namely, polymeric surfactants, are illustrated in some detail using Flory-Huggins theory and current polymer-adsorption theory. This is followed by a discussion of the phenomenon of steric stabilization of suspended particles and how it is affected by the detailed structure of the stabilizing polymeric species. It concludes with a discussion of the stabilization of emulsions by interfacial and bulk theological effects, and presents closing comments on multiple emulsions. [Pg.11]

This primary emulsion is then emulsified into aqueous solution of the high HLB polymeric surfactant (Synperonic PEF 127) using a low-speed stirrer (paddle stirrer) to produce multiple emulsion drops of the order of 10-100 pm in diameter. [Pg.124]

The last part of the chapter dealt with the preparation of stable water-in-oil-in-water (w/o/w) multiple emulsions that are suitable for application in cosmetics. The main criterion for producing stable w/o/w systems is to use two polymeric surfactants one with a low HLB number for preparation of the primary w/o emulsion and one with a high HLB number for preparation of the final w/o/w multiple emulsion. The primary emulsifier should produce a viscoelastic film fhat prevents leakage from the internal water droplets to the outside continuous phase. It will also ensure high stability (minimum coalescence) of the internal water droplets. The secondary emulsifier should also provide an effective barrier to prevent flocculation and coalescence of the multiple emulsion droplets on storage. It is also essential to balance the osmotic pressure of the internal aqueous droplets and the outside continuous medium. [Pg.126]

This section, which is by no means exhaustive, will deal with the following topics (i) Surfactants used in cosmetic formulations, (il) Interaction forces between particles or droplets in a dispersion and their combination, (iil) Description of stability in terms of the interaction forces, (iv) Self-assembly structures and their role in stabilization, skin feel, moisturization and delivery of actives, (v) Use of polymeric surfactants for stabilization of nanoemulsions, multiple emulsions, liposomes and vesicles. [Pg.20]

This chapter will start with a short account of the general classification and description of polymeric surfactants. This is followed by a summary on then-solutions properties. The adsorption and conformation of polymeric surfactants at the solid-liquid interface will be discussed at a fundamental level and some experimental results will be presented to illustrate the prediction of the theories. The interaction energies between particles or droplets containing adsorbed polymeric surfactants will be briefly described. The final section will give some applications of polymeric surfactants in suspensions, emulsions, and multiple emulsions. [Pg.544]

Formulation Surfactants are used for the formulation of many pharmaceutical formulations such as suspensions, emulsions, multiple emulsions, semisolid and gels for topical application. In all cases the surfactants must be approved by the Food and Drug Admins-tration (FDA) and this limits the choice in pharmaceutical applications. Several surfactant molecules have been approved by the FDA, both of the ionic and nonionic type. The latter are perhaps the most widely used molecules in pharmaceuticals, e.g., sorbitan esters (Spans) and their ethoxylated analogues (Tweens). Polymeric surfactants of the PEO-PPO-PEO block type or Poloxamers (ICl, U.K.) are also used in many formulations. Many pharmaceutical emulsions, e.g., lipid and anesthetic emulsions, are formulated using egg lecithin which has to be pure and free from any toxic impurities. [Pg.723]


See other pages where Polymeric surfactants multiple emulsions is mentioned: [Pg.124]    [Pg.582]    [Pg.124]    [Pg.582]    [Pg.190]    [Pg.330]    [Pg.7]    [Pg.236]    [Pg.244]    [Pg.244]    [Pg.247]    [Pg.365]    [Pg.177]    [Pg.109]    [Pg.222]    [Pg.345]    [Pg.347]    [Pg.361]    [Pg.361]    [Pg.361]    [Pg.202]    [Pg.90]    [Pg.122]    [Pg.123]    [Pg.109]    [Pg.58]    [Pg.59]    [Pg.580]    [Pg.580]    [Pg.581]    [Pg.519]   
See also in sourсe #XX -- [ Pg.361 ]




SEARCH



Emulsion polymerization

Emulsion polymerization surfactant

Emulsions, polymeric

Examples of Multiple Emulsions Using Polymeric Surfactants

Multiple emulsion

Polymeric surfactant

Polymerization emulsion polymerizations

Polymerization surfactant

Surfactant , multiple

Surfactant , multiple emulsions

© 2024 chempedia.info