Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymeric materials techniques

Computer modelling provides powerful and convenient tools for the quantitative analysis of fluid dynamics and heat transfer in non-Newtonian polymer flow systems. Therefore these techniques arc routmely used in the modern polymer industry to design and develop better and more efficient process equipment and operations. The main steps in the development of a computer model for a physical process, such as the flow and deformation of polymeric materials, can be summarized as ... [Pg.1]

Plastics testing encompasses the entire range of polymeric material characterizations, from chemical stmcture to material response to environmental effects. Whether the analysis or property testing is for quaUty control of a specific lot of plastic or for the determination of the material s response to long-term stress, a variety of test techniques is available for the researcher. [Pg.148]

The book scries Electron Spectroscopy Theory, Techniques, and Applications, edited by C. R. Brundle and A D. Baker, published by Academic Press has a number of chapters in its 5 volumes which are useful for those wanting to learn about the analytical use of XPS In Volume 1, An Introduction to Electron Spectroscopy (Baker and Brundle) in Volume 2, Basic Concepts of XPS (Fadley) in Volume 3, Analytical. plications of XPS (Briggs) and in Volume 4, XPSfor the Investigation of Polymeric Materials (Dilks). [Pg.299]

Also, new areas for applications are opening up. A most recent development has been the successful demonstration of three-dimensional imaging of ceramic and polymeric materials by solid state NMR techniques. This area is most likely to expand considerably. [Pg.471]

The incorporation of thermally labile azo groups into polymer backbones was first reported in the early 1950s [2]. Since then, numerous techniques for synthesizing azo-containing polymers have been developed. The effort to create new azo-containing polymeric materials has been reviewed by several authors [3-8]. [Pg.736]

Natural graphite and synthetic graphite were used as fillers for the manufacture of conducting composite materials by the polymerization filling technique [24, 53-56], The manufacture of conducting polymer composite materials by this technique on the basis of some kinds of carbon black is also known [51, 52],... [Pg.140]

History. The first attempts to desensitize RDX were reported by Frankel and Carle ton (Refs 1 thru 5) who made use of polymeric materials such as polyurethanes to coat expl crysts by means of emulsion or soln techniques. The first true PB-RDX was developed in 1952 at the Univ of Califs Los Alamos Lab and consisted of RDX coated with polystyrene plasticized with DOP (Refs 6 21). Since then the Lawrence Livermore Lab has evolved a series of PBX formulations, many of which are listed in Tables 3,4 5. These compns are described in Ref 77... [Pg.537]

After a temptative structure-based classification of different kinds of polymorphism, a description of possible crystallization and interconversion conditions is presented. The influence on the polymorphic behavior of comonomeric units and of a second polymeric component in miscible blends is described for some polymer systems. It is also shown that other characterization techniques, besides diffraction techniques, can be useful in the study of polymorphism in polymers. Finally, some effects of polymorphism on the properties of polymeric materials are discussed. [Pg.183]

Although the diffraction techniques are unique in providing detailed information on the structural organization at the molecular level in the different crystalline forms, there are other characterization techniques which are sensitive to the chain conformation and in some cases to the chain packing, which can be used advantageously (and in some case more efficiently than diffraction techniques) in the recognition and quantification of the different polymorphs in polymeric materials. [Pg.207]

To investigate the interface between polymeric materials, i.e. a so-called buried interfaces, several techniques are available schematically shown in Fig. 4 and listed in Table 2. They have quite different characteristics and depth resolution depending... [Pg.370]

When dealing with polymeric materials these early techniques were limited by the fact that only protons could be readily observed in the available fields. The small chemical shifts and the large dipole interactions made work with these systems very difficult. However, the development of the routine Fourier transform method of observation, especially when observing C-13 NMR, significantly changed the situation. [Pg.2]

The present review shows how the microhardness technique can be used to elucidate the dependence of a variety of local deformational processes upon polymer texture and morphology. Microhardness is a rather elusive quantity, that is really a combination of other mechanical properties. It is most suitably defined in terms of the pyramid indentation test. Hardness is primarily taken as a measure of the irreversible deformation mechanisms which characterize a polymeric material, though it also involves elastic and time dependent effects which depend on microstructural details. In isotropic lamellar polymers a hardness depression from ideal values, due to the finite crystal thickness, occurs. The interlamellar non-crystalline layer introduces an additional weak component which contributes further to a lowering of the hardness value. Annealing effects and chemical etching are shown to produce, on the contrary, a significant hardening of the material. The prevalent mechanisms for plastic deformation are proposed. Anisotropy behaviour for several oriented materials is critically discussed. [Pg.117]

Thermal and thermomechanical analyses44 are very important for determining die upper and lower usage temperature of polymeric materials as well as showing how they behave between diose temperature extremes. An especially useful thermal technique for polyurethanes is dynamic mechanical analysis (DMA).45 Uiis is used to study dynamic viscoelastic properties and measures die ability to... [Pg.241]

The sizes and concentration of the free-volume cells in a polyimide film can be measured by PALS. The positrons injected into polymeric material combine with electrons to form positroniums. The lifetime (nanoseconds) of the trapped positronium in the film is related to the free-volume radius (few angstroms) and the free-volume fraction in the polyimide can be calculated.136 This technique allows a calculation of the dielectric constant in good agreement with the experimental value.137 An interesting correlation was found between the lifetime of the positronium and the diffusion coefficient of gas in polyimide.138,139 High permeabilities are associated with high intensities and long lifetime for positron annihilation. [Pg.300]

Recent demands for polymeric materials request them to be multifunctional and high performance. Therefore, the research and development of composite materials have become more important because single-polymeric materials can never satisfy such requests. Especially, nanocomposite materials where nanoscale fillers are incorporated with polymeric materials draw much more attention, which accelerates the development of evaluation techniques that have nanometer-scale resolution." To date, transmission electron microscopy (TEM) has been widely used for this purpose, while the technique never catches mechanical information of such materials in general. The realization of much-higher-performance materials requires the evaluation technique that enables us to investigate morphological and mechanical properties at the same time. AFM must be an appropriate candidate because it has almost comparable resolution with TEM. Furthermore, mechanical properties can be readily obtained by AFM due to the fact that the sharp probe tip attached to soft cantilever directly touches the surface of materials in question. Therefore, many of polymer researchers have started to use this novel technique." In this section, we introduce the results using the method described in Section 21.3.3 on CB-reinforced NR. [Pg.597]

In order to modify the properties of polymeric materials or create new materials with specific properties, various techniques have been used including polymer blending, copolymerization, and... [Pg.866]

Hiroshi Fukumura received his M.Sc and Ph.D. degrees from Tohoku University, Japan. He studied biocompatibility of polymers in the Government Industrial Research Institute of Osaka from 1983 to 1988. He became an assistant professor at Kyoto Institute of Technology in 1988, and then moved to the Department of Applied Physics, Osaka University in 1991, where he worked on the mechanism of laser ablation and laser molecular implantation. Since 1998, he is a professor in the Department of Chemistry at Tohoku University. He received the Award of the Japanese Photochemistry Association in 2000, and the Award for Creative Work from The Chemical Society Japan in 2005. His main research interest is the physical chemistry of organic molecules including polymeric materials studied with various kinds of time-resolved techniques and scanning probe microscopes. [Pg.335]


See other pages where Polymeric materials techniques is mentioned: [Pg.163]    [Pg.245]    [Pg.163]    [Pg.245]    [Pg.207]    [Pg.209]    [Pg.313]    [Pg.20]    [Pg.272]    [Pg.334]    [Pg.63]    [Pg.136]    [Pg.397]    [Pg.229]    [Pg.283]    [Pg.313]    [Pg.488]    [Pg.134]    [Pg.633]    [Pg.682]    [Pg.197]    [Pg.1345]    [Pg.1]    [Pg.375]    [Pg.23]    [Pg.119]    [Pg.617]    [Pg.46]    [Pg.56]    [Pg.164]    [Pg.382]    [Pg.382]    [Pg.554]    [Pg.113]    [Pg.139]    [Pg.210]   
See also in sourсe #XX -- [ Pg.329 ]




SEARCH



Materials polymerization

Polymeric materials

Polymerization techniques

Polymerized materials

© 2024 chempedia.info