Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer elastomer-thermoplastic

Making Really Strong Polymers Tricks for Strengthening Ordinary Polymers Thermoplastic Elastomers... [Pg.290]

High-strength and temperature-resistant polymers Styrene-butadiene-styrene, triblock polymer, thermoplastic elastomer Crystalline domains with rigid chains between them and cross-finking chains Rigid-chain domains in a flexible-chain matrix... [Pg.170]

Adhesives and sealants were some of the first products to be made from block polymer thermoplastic elastomers and remain among the most important... [Pg.489]

C-Flec . [Concept Polymer] Thermoplastic elastomers inch SEBS, SBS for medical, laboratory, food, and industrial fields. [Pg.71]

The microstructure and stereoblock distribution peculiar of polypropenes produced with this class of catalysts imparts thermoplastic elastomeric properties to the polymers. Thermoplastic elastomers or elastoplasts (TPEs) owe their elastomeric properties of resiliency and high tensile strength to physical cross-linking (formation of hard domains in a soft matrix) due to the presence of short, crystallizable... [Pg.399]

Polymers Thermoplastic elastomers Styrene-butadiene-styrene (SBS), styrene-butadiene-rubber (SBR), styrene-isoprene-styrene (SIS), styrene-ethyl-butadiene-styrene (SEBS), ethyl-propyl-dien tetropolymer (EPDM), isobutene-isoprene copolymer (NR), polybutadiene (PBD),natural rubber (l),(2),(3),(4), [8]. [9], [10], [II], [13]... [Pg.141]

Chien, J. C. W. Rausch, M. D. Polypropylene and other olefin polymer thermoplastic elastomers, novel catalysts for preparing the same, and method of preparation. U.S. Patent 5,756,614 (Academy of Applied Science), May 26,1998. [Pg.265]

Structural concepts for tissue-compatible and biodegradable polymers, thermoplastic elastomers, and thermosets with shape memory capabilities will be introduced. Their thermal and mechanical properties and degradation behaviour will be explained. An important precondition for the shape memory effect of polymers is elasticity. An elastic polymeric material consists of flexible segments, so-called network chains, which are connected via netpoints or junctions. The permanent shape of such a polymer is determined by the netpoints. The network chains take a coil-like conformation in unloaded condition. If the polymer is stretched, the network chains become extended... [Pg.281]

Ethane is dehydrogenated to produce ethylene, which is used to produce EPDM, CM, CSM, EAM, and FKM elastomers and SEBS, SEPS, and SEPS block-polymer thermoplastic elastomers. Also, EPDM is used to make thermoplastic vulcanizates by dynamic vulcanization with polypropylene. [Pg.433]

Gun Propellents. Low sensitivity gun propeUants, often referred to as LOVA (low vulnerabUity ammunition), use RDX or HMX as the principal energy components, and desensitizing binders such as ceUulose acetate butyrate or thermoplastic elastomers (TPE) including poly acetal—polyurethane block copolymers, polystyrene—polyacrjiate copolymers, and glycidyl azide polymers (GAP) to provide the required mechanical... [Pg.40]

EPDM-Derived Ionomers. Another type of ionomer containing sulfonate, as opposed to carboxyl anions, has been obtained by sulfonating ethylene—propjlene—diene (EPDM) mbbers (59,60). Due to the strength of the cross-link, these polymers are not inherently melt-processible, but the addition of other metal salts such as zinc stearate introduces thermoplastic behavior (61,62). These interesting polymers are classified as thermoplastic elastomers (see ELASTOLffiRS,SYNTHETIC-THERMOPLASTICELASTOLffiRS). [Pg.409]

Butadiene—Methacrylic Acid Ionomers. Carboxyl groups can readily be introduced into butadiene elastomers by copolymerization, and the effects of partial neutralization have been reported (63—66). The ionized polymers exhibit some degree of fluidity at elevated temperatures, but are not thermoplastic elastomers, and are very deficient in key elastomer properties such as compression set resistance. [Pg.409]

Noncrystalline aromatic polycarbonates (qv) and polyesters (polyarylates) and alloys of polycarbonate with other thermoplastics are considered elsewhere, as are aHphatic polyesters derived from natural or biological sources such as poly(3-hydroxybutyrate), poly(glycoHde), or poly(lactide) these, too, are separately covered (see Polymers, environmentally degradable Sutures). Thermoplastic elastomers derived from poly(ester—ether) block copolymers such as PBT/PTMEG-T [82662-36-0] and known by commercial names such as Hytrel and Riteflex are included here in the section on poly(butylene terephthalate). Specific polymers are dealt with largely in order of volume, which puts PET first by virtue of its enormous market volume in bottie resin. [Pg.292]

As with all thermoplastic elastomers, the copolyesterethers can be processed as thermoplastics. They are linear polymers and contain no chemical cross-links, thus the vulcanisation step needed for thermosetting elastomers is eliminated and scrap elastomer can be re-used in the same process as virgin material (176—180). [Pg.302]

Urethanes are processed as mbber-like elastomers, cast systems, or thermoplastic elastomers. The elastomer form is mixed and processed on conventional mbber mills and internal mixers, and can be compression, transfer, or injection molded. The Hquid prepolymers are cast using automatic metered casting machines, and the thermoplastic peUets are processed like aU thermoplastic materials on traditional plastic equipment. The unique property of the urethanes is ultrahigh abrasion resistance in moderately high Shore A (75—95) durometers. In addition, tear, tensUe, and resistance to many oUs is very high. The main deficiencies of the urethanes are their resistance to heat over 100°C and that shear and sliding abrasion tend to make the polymers soft and gummy. [Pg.234]

Modified Bitumen Membranes. These membranes were developed in Europe during the late 1950s and have been used in the United States since the late 1970s. There are two basic types of modified asphalts and two types of reinforcement used in the membranes. The two polymeric modifiers used are atactic polypropylene (APP) and styrene—butadiene—styrene (SBS). APP is a thermoplastic polymer, whereas SBS is an elastomer (see Elastomers, thermoplastic elastomers). These modified asphalts have very different physical properties that affect the reinforcements used. [Pg.321]

An entirely new concept was iatroduced iato mbber technology with the idea of "castable" elastomers, ie, the use of Hquid, low molecular-weight polymers that could be linked together (chain-extended) and cross-linked iato mbbery networks. This was an appealing idea because it avoided the use of heavy machinery to masticate and mix a high viscosity mbber prior to mol ding and vulcanization. In this development three types of polymers have played a dominant role, ie, polyurethanes, polysulftdes, and thermoplastic elastomers. [Pg.471]

Blends of isobutylene polymers with thermoplastic resins are used for toughening these compounds. High density polyethylene and isotactic polypropylene are often modified with 5 to 30 wt % polyisobutylene. At higher elastomer concentration the blends of butyl-type polymers with polyolefins become more mbbery in nature, and these compositions are used as thermoplastic elastomers (98). In some cases, a halobutyl phase is cross-linked as it is dispersed in the polyolefin to produce a highly elastic compound that is processible in thermoplastic mol ding equipment (99) (see Elastomers, synthetic-thermoplastic). ... [Pg.487]

Because of increased production and the lower cost of raw material, thermoplastic elastomeric materials are a significant and growing part of the total polymers market. World consumption in 1995 is estimated to approach 1,000,000 metric tons (3). However, because the melt to soHd transition is reversible, some properties of thermoplastic elastomers, eg, compression set, solvent resistance, and resistance to deformation at high temperatures, are usually not as good as those of the conventional vulcanized mbbers. AppHcations of thermoplastic elastomers are, therefore, in areas where these properties are less important, eg, footwear, wine insulation, adhesives, polymer blending, and not in areas such as automobile tires. [Pg.11]

The classification given in Table 1 is based on the process, ie, thermosetting or thermoplastic, by which polymers in general are formed into usehil articles and on the mechanical properties, ie, rigid, flexible, or mbbery, of the final product. AH commercial polymers used for molding, extmsion, etc, fit into one of these six classifications the thermoplastic elastomers are the newest. [Pg.11]

Other thermoplastic elastomer combiaations, ia which the elastomer phase may or may not be cross-linked, include blends of polypropylene with nitrile (30,31), butyl (33), and natural (34) mbbers, blends of PVC with nitrile mbber (35,36), and blends of halogenated polyolefins with ethylene interpolymers (29). Collectively, thermoplastic elastomers of this type ate referred to herein as hard polymer/elastomer combinations. Some of the more important examples of the various types are shown in Table 3. [Pg.13]

Thermoplastic elastomers that are hard polymer/elastomer combinations are often not truly synthesized. Instead, the two polymers that form the hard and soft phases are intimately mixed on high shear equipment. [Pg.14]

A large number of hard polymer/elastomer combinations made by the last technique have been investigated (30). In some cases, the components are technologically compatibilized by use of a grafting reaction, but usually a fine dispersion of the two phases is formed that is sufficient to give the product the properties of a thermoplastic elastomer. [Pg.15]

Table 7. Some Trade Names of Thermoplastic Elastomers Based on Hard Polymer/Elastomer Combinations... Table 7. Some Trade Names of Thermoplastic Elastomers Based on Hard Polymer/Elastomer Combinations...
In the absence of impurities there is frequently no termination step in anionic polymerisations. Hence the monomer will continue to grow until all the monomer is consumed. Under certain conditions addition of further monomer, even after an interval of several weeks, will eause the dormant polymerisation process to proceed. The process is known as living polymerisation and the products as living polymers. Of particular interest is the fact that the follow-up monomer may be of a different species and this enables block copolymers to be produced. This technique is important with certain types of thermoplastic elastomer and some rather specialised styrene-based plastics. [Pg.36]

Ethylene-cyclo-olefin copolymers have been known since 1954 (DuPont USP2 721 189) but these materials only became of importance in the late 1990s with the development of copolymers of ethylene and 2-norbomene by Hoechst and Mitsui using metallocene technology developed by Hoechst. The product is marketed as Topas by Ticona. By adjustment of the monomer ratios polymers with a wide range of Tg values may be obtained including materials that are of potential interest as thermoplastic elastomers. This section considers only thermoplastic materials, cyclo-olefins of interest as elastomers are considered further in Section 11.10. [Pg.280]

Subsequently, much improved thermoplastic polyolefin rubbers were obtained by invoking a technique known as dynamic vulcanisation. This process has been defined (Coran, 1987) as the process of vulcanizing elastomer during its intimate melt-mixing with a non-vulcanizing thermoplastic polymer. Small elastomer droplets are vulcanized to give a particulate... [Pg.302]

Such rubbery and thermoplastic polymers may be blended in any proportion, so that on one hand the product may be considered as a thermoplastic elastomer, and on the other as an elastomer-modified thermoplastic. There is, furthermore, a spectrum of intermediate materials, including those which might be considered as leather-like. In this area the distinction between rubber and plastics material becomes very blurred. [Pg.303]


See other pages where Polymer elastomer-thermoplastic is mentioned: [Pg.198]    [Pg.198]    [Pg.3455]    [Pg.556]    [Pg.282]    [Pg.198]    [Pg.198]    [Pg.3455]    [Pg.556]    [Pg.282]    [Pg.39]    [Pg.329]    [Pg.289]    [Pg.302]    [Pg.305]    [Pg.236]    [Pg.271]    [Pg.493]    [Pg.184]    [Pg.472]    [Pg.11]    [Pg.11]    [Pg.12]    [Pg.86]    [Pg.261]    [Pg.528]   
See also in sourсe #XX -- [ Pg.44 , Pg.45 ]




SEARCH



Polymers elastomers

Thermoplastic elastomers

© 2024 chempedia.info