Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer TADDOLs

Seebach et al., who first developed the TADDOL ligands [53, 67], have also developed a number of polymer- and dendrimer-bound TiCl2-TADDOLate catalysts derived from the monomeric TADDOLs [68]. Application of 10mol% of this type of catalysts, derived from polymers and dendrimers of 27 and 28, respectively, in the... [Pg.229]

Since catalysts immobilised on hydrophilic silica gel often give superior performances to their polymer-bound or polymer-incorporated analogues for multiple applications, Heckel and Seebach have immobilised TADDOL derivatives on hydrophobic controlled-pore glass (CPG) silica gel. Indeed, CPG is... [Pg.298]

Employing 0.2 equiv. of polymer-bound dendritic Ti-TADDOLates of type 89 (1st and 2nd generation) enantioselectivities up to 98 2 were observed (Fig. 31). This value is comparable to those obtained in heterogeneous reactions using non-dendritic, polymer-bound analogs 88 (er up to 98,5 1,5 [ 105 ]) and with the... [Pg.169]

A comparison of the rates showed that the polymer-bound Ti-TADDOLate 88 and the dendritic polymer 89 catalyze the Et2Zn-to-PhCHO addition at a similar fast rate as the monomeric TADDOLate 86 and the dendritic TADDOLate 87 in homogeneous solution [107,112]. Further experiments also with other ligands are being carried out in our laboratories. [Pg.170]

The rate for the simple polymer-bound TADDOLate published in [107] was taken from [110]. Newer results show a similar rate for both polymer-bound catalysts described herein. [Pg.174]

Alternatively, polystyrene-based solutions were developed. Best results for immobilization were found when TADDOL derivatives (6) and (7) containing phenolic hydroxy groups were prepared in solution and anchored to Merrifield resin (Scheme 4.4) [66]. The authors managed to couple (7) to PS-DVB polymers with different loading and cross-Hnking degrees as weU as on polyethylene polymer which contained polyvinylbenzyl chloride chains (SMOP-3-resins). [Pg.209]

Recently, dendrimers, which are hyperbranched macromolecules, were found to be an appropriate support for polymer catalysts, because chiral sites can be designed at the peripheral region of the dendrimers (Scheme 5). Seebach synthesized chiral dendrimer 14, which has TADDOLs on its periphery and used an efficient chiral ligand in the Ti(IV)-promoted enantioselective alkylation [21]. We developed chiral hyperbranched hydrocarbon chain 15 which has six p-ami-no alcohols [22], It catalyzes the enantioselective addition of diethylzinc to aldehydes. We also reported dendritic chiral catalysts with flexible carbosilane backbones [23]. [Pg.98]

Various a,a,a, a -tetraaryl-l,3-dioxolane-4,5-dimethanols have been prepared from (R,R)-tartrate, which are called TADDOLs by Seebach et al. They studied the influence of the Ti catalyst preparation methods, the presence of molecular sieves, and the TADDOL structure in the enantioselective Diels-Alder reaction of acryloyl oxazolidinones [41] (Eq. 8A.22). Seebach also prepared polymer- and dendrimer-bound Ti-TADDOLates and used in catalytic asymmetric cycloadditions [42],... [Pg.476]

It has been observed that enantioselective polymer-bound catalysts prepared by copolymerization produce in some cases better asymmetric inductions than systems prepared by grafting [175]. After much optimization, a monolithic polymer catalyst 51 suitable for a titanium-TADDOLate catalyzed Diels-Alder reaction was developed (Scheme 4.77). The monolith was applied in a flow system both under one pass and 24 h recirculation conditions, the latter producing the best yield (55%) and ee (23%) however, this contrasts poorly with the homogeneous batch reaction although the ee is comparable with the heterogeneous batch process. The reversal of topicity was also... [Pg.109]

In contrast the polymer-bound Ti-TADDOLates are very effective D. Seebach, R, E. Marti, T. Hin-terinann, Helv. Chim. Acta. 1996, 79, 1710. [Pg.336]

Several researchers have reported synthetic approaches based on asymmetric Diels-Alder reactions catalyzed by TADDOL-Ti complexes [117-120]. Dendritic [121] and polymer-supported TADDOL-Ti complexes [122] have also been employed as recoverable and reusable catalysts to give comparatively high enantioselectivity. Transition-state models have been proposed independently by several groups for TADDOL-type titanium catalysis [121,123]. [Pg.827]

Other important titanium alkoxide-based Lewis acids are Ti-TADDOLate (a,a,a, a -tetraaryl-l,3-dioxolane-4,5-dimethanol)ates, among the most effective chiral catalysts for several important asymmetric reactions. These will be discussed in the sections on polymer-supported Diels-Alder reactions (Section 21.10) and alkylations (Section 21.9). [Pg.950]

Since the first report on Ti-TADDOLate-mediated Diels-Alder reactions [97,98] several studies of the same reaction have been reported these have shown that Ti-TADDOLate is an efficient chiral Lewis acid in enantioselective Diels-Alder reactions. Polymer- and dendrimer-supported Ti-TADDOLates have been reported and their catalytic activity in several enantioselective reactions has been evaluated [59]. Various kinds of polymeric TADDOLs were prepared both by chemical modification (Eq. 22) and by copolymerization (Eq. 23). [Pg.969]

Polymer-supported TADDOL-Ti catalyst 79 prepared by chemical modification was poorly active in the Diels-Alder reaction of 3-crotonoyloxazolidinone with cyclo-pentadiene (Eq. 24) whereas polymeric TADDOL-Ti 81 prepared by copolymerization of TADDOL monomer 80 with styrene and divinylbenzene had high activity similar to that of the soluble catalyst. In the presence of 0.2 equiv. 81 (R = H, Aryl = 2-naphthyl) the Diels-Alder adduct was obtained in 92 % yield with an endolexo ratio of 87 13. The enantioseleetivity of the endo product was 56 % ee. The stability and recyclability of the catalyst were tested in a batch system. The degree of conversion, the endolexo selectivity, and the enantioseleetivity hardly changed even after nine runs. Similar polymer-supported Ti-TADDOLate 82 was prepared by the chemical modification method [99]. Although this polymer efficiently catalyzed the same reaction to give the (2R,2S) adduct as a main product, asymmetric induction was less than that obtained by use of a with similar homogeneous species. [Pg.970]

Free-radical and anionic polymerizations of TAD-DOL—MA (30) proceed exclusively via a cyclization mechanism, and the obtained polymer seems to have a helical conformation with an excess helicity.92-94 The main chain structure of poly(TADDOL—MA) with cyclized units (poly-30) is different from that of all other polymethacrylates discussed here. Similar monomers have been synthesized and polymerized.95... [Pg.12]

Seebach s group demonstrated the utility of polymer-bound, chiral titanium TADDOLates in preparing chiral secondary alcohols (Figure 3.24).The polymeric catalyst 37 was contained inside a mesh tea bag, and was reused by simply charging fresh reagents and solvent. The ruggedness of the system was shown when the product enantioselectivity dropped from 96% (S) to only 92% (S) over 20 successive runs, and the average yield was 90% [50]. [Pg.75]

Nonracemic Ti-BINOLate (BINOL = l,l -bi-2-naplilli()l) and Ti-TADDOLate (TADDOL = a,a,a, a -tetraaryl-2,2-dimethyl-l,3-dioxolan-4,5-dimethanol) complexes are also effechve chiral catalysts for the asymmetric alkylation of aldehydes [9-11]. Seebach developed polystyrene beads with dendritically embedded BINOL [9] or TADDOL derivatives 11 [10, 11]. As the chiral ligand is located in the core of the dendritic polymer, less steric congeshon around the catalyhc center was achieved after the treatment with Ti(OiPr)4. This polymer-supported TiTADDOLate 14 was then used for the ZnEt2 addition to benzaldehyde. Chiral 1-phenylpropanol was obtained in quantitahve yield with 96% ee (Scheme 3.3), while the polymeric catalyst could be recycled many times. [Pg.75]

Luis prepared polymeric monoliths 17 containing TADDOL subunits [13] these were synthesized with a thermally induced radical soluhon polymerization of a mixture containing TADDOL monomer, styrene and DVB, using toluene/1-dodecanol as the precipitating porogenic mixture and azoisobutyronitrile (AIBN) as the radical inilialor. The polymer-supported Ti-TADDOLates generated from 17 and Ti(OiPr)4 were then used for the asymmetric alkylation of benzaldehyde to give 1-phenylethanol in 60% yield and 99% ee [13]. [Pg.76]

Various types of chirally modified Lewis acids have been developed for asymmetric Diels-Alder cycloadditions. Some of these, including Ti-TADDOLates, have been attached to crosslinked polymers [11]. A recent example of this approach involved polymeric monoliths 103 containing TADDOL subunits (Scheme 3.29). The treatment of 103 with 71X4 afforded Ti-TADDOLates, which were used for the asymmetric Diels-Alder reachon of cyclopentadiene 104 and 105. The major product obtained in this reachon was the mdo adduct with 43% ee [58]. The supported Ti-catalysts showed an exhaordinary long-term stabihty, being achve for at least one year. [Pg.92]

Based on this concept, Seebach et al. developed the first example of TADDOL-cored dendrimers (Figure 4.41) immobilized in a PS matrix [116]. The resultant internally dendrimer-functionalized polymer beads were loaded with Ti(OiPr)4, leading to a new class of supported Ti-TADDOLate catalysts for the enantioselective addition of diethylzinc to benzaldehyde. Compared to the conventional insoluble polymer-supported Ti-TADDOLate catalysts, these heterogeneous dendrimer catalysts gave much higher catalytic activities, with turnover rates close to those of the soluble analogues. The polymer-supported dendrimer TADDOLs were recovered by simple phase separation and reused for at least 20 runs, with similar catalytic efficiency. [Pg.171]

Seebach s TADDOL auxiliaries, derived from tartrate (chapter 23), combine well with Ti(IV) to make an effective Lewis acid catalyst 130 for Diels-Alder reactions. The reaction of isoprene with the doubly activated amide dienophile 128 gives one adduct 129 in good yield.29 Polymer supported versions of this catalyst are available. [Pg.583]

Styryl-terminated Frechet-type dendrimers have been introduced as novel polymer crosslinkers by Seebach et al. [43-45]. They are constituted of four to 16 peripheral styryl units attached to aryl end branches of dendritic TADDOL, BINOL or Salen ligands and were copolymerised with styrene by suspension polymerisation. The catalytic performance of the polymer-bound catalyst was identical to that of the homogeneous analogues however, the supported catalysts could be used in many consecutive catalytic runs with only small loss in catalytic activity. A major drawback of fixing the catalytic unit in the core of the crosslinker is the poor loading capacity of the final polymer (0.13-0.20 mmol g 0> especially when high amounts of catalysts (10-20 mol%) are needed. [Pg.7]

Cycloaddition reactions proceeded at room temperature with a 2.5-fold excess of cyclopentadiene. Conversions depended very much on the resin type and ranged from 30-100%. Endolexo selectivity amounted to about 4 1 (88 89) which is similar to the one reported for the homogeneous phase reaction showing that the polymer-supported TADDOLs 86 indeed possessed... [Pg.242]


See other pages where Polymer TADDOLs is mentioned: [Pg.194]    [Pg.141]    [Pg.168]    [Pg.170]    [Pg.279]    [Pg.207]    [Pg.122]    [Pg.122]    [Pg.34]    [Pg.206]    [Pg.372]    [Pg.44]    [Pg.618]    [Pg.91]    [Pg.377]    [Pg.960]    [Pg.880]    [Pg.76]    [Pg.171]    [Pg.173]    [Pg.416]    [Pg.246]    [Pg.18]    [Pg.803]    [Pg.18]    [Pg.10]   
See also in sourсe #XX -- [ Pg.960 ]




SEARCH



TADDOLate

TADDOLates

TADDOLs

© 2024 chempedia.info