Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer solution behavior effect

The polymer solution behavior is of signifieant importance due to large number of applications in the field. The supereritieal fluids primarily follow class four behavior. An example related to the effect of supercritical solvent on phase behavior of such systems is shown in Figure 21.1.7. More comprehensive eoverage of the field can be found in texts and review papers. ... [Pg.1425]

In the neighborhood of their c, monodisperse multiarm stars in a good solvent are expected to crystallize. This is a consequence of the concentration-induced enhanced osmotic pressure which outbalances the elastic energy of the sUetched arms. A variety of crystalline phases have been predirted from an effective interactions approach using V r) of eqn [ 18]. At higher concentrations c c, the crystal shoirld melt due to the enhanced osmotic pressure, hence recovering the semidilute polymer solution behavior. However, these prediaions have not been supported convincingly by experimental evidence. It has been... [Pg.324]

What Is a Model Liquid Crystalline Polymer Solution Solvent Effects on the Flow Behavior of LCP Solutions... [Pg.356]

Molecular weight distribution (MWD) is an important factor affecting the rheological behavior of a polymer solution. The effects of MWD on polymer blend and melt were studied previously by many groups. Struglinski el al [1] analyzed the linear viscoelastic properties of the binary polydispersed entangled polymers. They concluded that the behavior of the binary mixture depends both on the relaxation time and weight fraction of the individual component. The zero shear viscosity pA of the mixture is dominated by the... [Pg.1860]

Before concluding this section, there is one additional thermodynamic factor to be mentioned which also has the effect of lowering. Since we shall not describe the thermodynamics of polymer solutions until Chap. 8, a quantitative treatment is inappropriate at this point. However, some relationships familiar from the behavior of low molecular weight compounds may be borrowed for qualitative discussion. The specific effect we consider is that of chain ends. The position we take is that they are foreign species from the viewpoint of crystallization. [Pg.217]

Many ceUulosic derivatives form anisotropic, ie, Hquid crystalline, solutions, and cellulose acetate and triacetate are no exception. Various cellulose acetate anisotropic solutions have been made using a variety of solvents (56,57). The nature of the polymer—solvent interaction determines the concentration at which hquid crystalline behavior is initiated. The better the interaction, the lower the concentration needed to form the anisotropic, birefringent polymer solution. Strong organic acids, eg, trifluoroacetic acid are most effective and can produce an anisotropic phase with concentrations as low as 28% (58). Trifluoroacetic acid has been studied with cellulose triacetate alone or in combination with other solvents (59—64) concentrations of 30—42% (wt vol) triacetate were common. [Pg.297]

Molecular dynamics, in contrast to MC simulations, is a typical model in which hydrodynamic effects are incorporated in the behavior of polymer solutions and may be properly accounted for. In the so-called nonequilibrium molecular dynamics method [54], Newton s equations of a (classical) many-particle problem are iteratively solved whereby quantities of both macroscopic and microscopic interest are expressed in terms of the configurational quantities such as the space coordinates or velocities of all particles. In addition, shear flow may be imposed by the homogeneous shear flow algorithm of Evans [56]. [Pg.519]

The recent interest in substituted silane polymers has resulted in a number of theoretical (15-19) and spectroscopic (19-21) studies. Most of the theoretical studies have assumed an all-trans planar zig-zag backbone conformation for computational simplicity. However, early PES studies of a number of short chain silicon catenates strongly suggested that the electronic properties may also depend on the conformation of the silicon backbone (22). This was recently confirmed by spectroscopic studies of poly(di-n-hexylsilane) in the solid state (23-26). Complementary studies in solution have suggested that conformational changes in the polysilane backbone may also be responsible for the unusual thermochromic behavior of many derivatives (27,28). In order to avoid the additional complexities associated with this thermochromism and possible aggregation effects at low temperatures, we have limited this report to polymer solutions at room temperature. [Pg.61]

In this study, adsorption behavior of water soluble polymers and their effect on colloid stability have been studied using polystyrene latices plus cellulose derivatives. As the aqueous solution of hydroxy propyl cellulose(HPC) has a lower critical solution temperature(LCST), near 50 °C(6 ), an increased adsorption and strong protection can be expected by treating the latices with HPC at the LCST. [Pg.132]

The viscosity of polymer solutions has been considered theoretically by Flory,130 but although this theory has been applied to cellulose esters,131 no applications have yet been made in the case of the starch components. Theoretical predictions of the effect, on [17], of branching in a polymer molecule have been made,132 and this may be of importance with regard to the viscometric behavior of amylopectin. [Pg.358]

In the mucosal environment, effects of salt, pH, temperature, and lipids need to be taken into consideration for possible effects on viscosity and solubility. A pH range of 4-7 and a relatively constant temperature of 37°C can generally be expected. Observed solution properties as a function of salt and polymer concentration can be referred to as saline compatibility. Polyelectrolyte solution behavior [27] is generally dominated by ionic interactions, such as with other materials of like charge (repulsive), opposite charge (attractive), solvent ionic character (dielectric), and dissolved ions (i.e., salt). In general, at a constant polymer concentration, an increase in the salt concentration decreases the viscosity, due to decreasing the hydrodynamic volume of the polymer at a critical salt concentration precipitation may occur. [Pg.218]

There are some limitations to this technique. First, proper mixing can only be achieved with dilute, low viscosity polymer solutions (perhaps a few percent polymer by mass), so the final films are at most a few hundred nanometers thick. This can be a problem if confinement will create undesired effects in the blend behavior. [Pg.82]

Viscosity of Polymer Solutions. Polymer solutions are very common. Glues, pastes, and paints are just a few examples of commercially available aqueous suspensions of organic macromolecules. Also, recall from Chapter 3 that certain types of polymerization reactions are carried out in solution to assist in heat removal. The resulting polymers are also in solution, and their behavior must be fully understand in order to properly transport them and effect solvent removal, if necessary. [Pg.301]

A ternary system consisting of two polymer species of the same kind having different molecular weights and a solvent is the simplest case of polydisperse polymer solutions. Therefore, it is a prototype for investigating polydispersity effects on polymer solution properties. In 1978, Abe and Flory [74] studied theoretically the phase behavior in ternary solutions of rodlike polymers using the Flory lattice theory [3], Subsequently, ternary phase diagrams have been measured for several stiff-chain polymer solution systems, and work [6,17] has been done to improve the Abe-Flory theory. [Pg.110]

In addition to the above effects, the intermolecular interaction may affect polymer dynamics through the thermodynamic force. This force makes chains align parallel with each other, and retards the chain rotational diffusion. This slowing down in the isotropic solution is referred to as the pretransition effect. The thermodynamic force also governs the unique rheological behavior of liquid-crystalline solutions as will be explained in Sect. 9. For rodlike polymer solutions, Doi [100] treated the thermodynamic force effects by adding a self-consistent mean field or a molecular field Vscf (a) to the external field potential h in Eq. (40b). Using the second virial approximation (cf. Sect. 2), he formulated Vscf(a), as follows [4] ... [Pg.120]

The suggested rod like structure of the pendant-type FVP-Co(III) complex is supported by the viscosity behavior of the polymer-complex solution (Fig. 3)2 The PVP-Co(III) complexes have higher viscosity than PVP this suggests that the polymer complex has a linear structure and that intra-polymer chelation does not occur. The dependence of the reduced viscosity on dilution and the effect of ionic strength further show that Co(en)2(PVP)Cl] Cl2 is a poly(electrolyte). The polymer complexes with higher x values have a rodlike structure due to electrostatic repulsion or the steric bulkiness of the Co(III) chelate. On the other hand, the solubility and solution behavior of the polymer complex with a lower x value is similar to that of the polymer ligand itself. [Pg.10]

The collapse of the networks was studied experimentally mainly for the case of mixed solvents. From the practical point of view, it would be interesting to generate the collapse in a purely aqueous medium. In this case, by changing the interactions between subchains of the network in aqueous solution it is possible, for example, to influence effectively diffusion in gels that are used as carriers of enzymes or pharmacologically active substances. One of the new directions in the research of network polymers is the study of their interaction with linear macromolecules. The results of the theoretical analysis of the behavior of polymer networks swollen in polymer solutions have been discussed in Ref. [34,35] (see Sect. 2.4.2). [Pg.161]

Tager and co-workers (51) have invoked bundle structures to explain correlations between the viscosities of concentrated polymer solutions and the thermodynamic interactions between polymer and solvent. They note, for example, that solutions of polystyrene in decalin (a poor solvent) have higher viscosities than in ethyl benzene (a good solvent) at the same concentration, and quote a number of other examples. Such results are attributed to the ability of good solvents to break up the bundle structure the bundles presumably persist in poor solvents and give rise to a higher viscosity. It seems possible that such behavior could also be explained, at least in part, by the effects of solvent on free volume (see Section 5). Berry and Fox have found, for example, that concentrated solution data on polyvinyl acetate in solvents erf quite different thermodynamic interaction could be reduced satisfactorily by free volume considerations alone (16). Differences due to solvent which remain after correction for free volume... [Pg.15]

Forsman,W.C., Grand, H.S. Theory of entanglement effects in linear viscoelastic behavior of polymer solutions and melts. I. Symmetry considerations. Macromolecules 5,289-293 (1972). [Pg.173]

In the case of internal flows extensive experimental data are available for turbulent pipe flow. The study of turbulent-friction coefficients in pipe flow has brought forth a number of effects displayed by flowing polymer solutions. Furthermore, many hydro-dynamic investigations in pipe flow have been made to elucidate the flow behavior (laminar and turbulent) of Newtonian fluids. Thus, the pipe is one of the most investigated and traditional pieces of test apparatus and one can easily compare the flow behavior of Newtonian fluids and polymer solutions under constant boundary conditions. [Pg.118]

The effects of solute-solvent interactions play a greater role in the chromatography of polymers than in conventional TLC. Normally, solubility plays a very small role in the TLC behavior of monomeric compounds. For polymers, however, the effects of solute-solvent interaction are critical. Solvents with 8 s which match that of the polymer are good thermodynamic solvents, and should displace the polymer during development. [Pg.63]


See other pages where Polymer solution behavior effect is mentioned: [Pg.322]    [Pg.201]    [Pg.321]    [Pg.6]    [Pg.556]    [Pg.172]    [Pg.512]    [Pg.41]    [Pg.247]    [Pg.252]    [Pg.254]    [Pg.481]    [Pg.174]    [Pg.174]    [Pg.222]    [Pg.176]    [Pg.111]    [Pg.43]    [Pg.72]    [Pg.86]    [Pg.147]    [Pg.31]    [Pg.143]    [Pg.52]    [Pg.281]   
See also in sourсe #XX -- [ Pg.28 , Pg.29 , Pg.30 , Pg.31 , Pg.32 , Pg.33 , Pg.34 ]




SEARCH



Behavioral effects

Effects behavior

Polymer behavior

Polymer solution behavior

Polymer solution behavior excluded - volume effect

Solution behavior

© 2024 chempedia.info