Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer latex particles, kinetics

Abstract. An overview of the synthesis and applications of microgels and coreshell particles is provided, with emphasis on work originating from the author s laboratory. Microgels, which are cross-linked polymer latex particles, can be used for selective uptake of ions or polymers, or the controlled release of various compounds. Various methods for the synthesis of core-shell particles are described such as interfacial polymerization, layer-by-layer deposition, colloidosomes , internal phase separation, and silica shells. The release kinetics for controlled (sustained or triggered) release purposes is discussed. [Pg.11]

Kinetic Study of Association Processes between Polymer Latex Particles... [Pg.284]

KITANO ISE Kinetics of Association between Polymer Latex Particles 289... [Pg.289]

Synthesis, forming condition andmechanism, and application of core-shell polymer latex particles were reviewed. The influences of thermodynamic and kinetic factors on the fixmation of core-shell mwphology were discussed, and a prediction of its future developments was made. 52 refs. CHINA... [Pg.94]

The micelles are present at a concentration of about lO per ml of liquor and each micelle contains around 100 monomer molecules. In contrast, the number of monomer droplets is only about 10 ° per ml. Thus, despite the larger volume of monomer droplets, the micelles offer a very much larger surface area. A radical formed in the aqueous phase will thus encounter a monomer-filled micelle much more often than a monomer droplet. Therefore, the polymerization takes place practically only in the micelles and not in the monomer droplets. The monomer consumed in the micelles is replaced by diffusion from the monomer droplets through the aqueous phase. According to the theories of Harkins and of Smith and Ewart, the kinetic course of an emulsion polymerization is divided into three intervals At first some of the micelles increase rapidly in size as the polymerization advances and are transformed into so-called latex particles, containing both monomer and polymer. These are still very much smaller than the monomer droplets and have an initial diameter of about 20-40 pm, corresponding to about... [Pg.61]

Another interesting phenomenon is that of depletion flocculation. This can be observed with dispersions (e.g. lattices) which contain inert additives, such as free polymer, non-ionic surfactant or even small (e.g. silica) particles. As the latex particles approach one another, the gaps between them become too small to accommodate the above additives, but the kinetic energy of the particles may be sufficient to enable them to be expelled from the gap i.e. a de-mix occurs, for which AG is positive. When this de-mix has been achieved, an osmotic situation exists in which the remaining pure dispersion medium will tend to flow out from the gap between the particles in order to dilute the bulk dispersion medium, thus causing the particles to flocculate. [Pg.241]

Finally, the time of growth of each chain is found by determining how many distinguished latex particles stopped growing at any particular instant. This is obtained readily from the product of the number concentration of the different types of distinguished particles and the (known) rate coefficient for the appropriate kinetic event. Of course, the growth time of each chain determines the molecular weight of the polymer produced on termination. [Pg.110]

A. Loxley and B. Vincent, Equilibrium and kinetic aspects of the pH swelling of poly(vinylpyridine) latex particles, Colloid Polymer Sci. 275, 1108-1114 (1997). [Pg.21]

Usually or most widely applied, polymer latexes are made by emulsion polymerization [ 1 ]. Without any doubt, emulsion polymerization has created a wide field of applications, but in the present context one has to be aware that an inconceivable restricted set of polymer reactions can be performed in this way. Emulsion polymerization is good for the radical homopolymerization of a set of barely water-soluble monomers. Already heavily restricted in radical copolymerization, other polymer reactions cannot be performed. The reason for this is the polymerization mechanism where the polymer particles are the product of kinetically controlled growth and are built from the center to the surface, where all the monomer has to be transported by diffusion through the water phase. Because of the dictates of kinetics, even for radical copolymerization, serious disadvantages such as lack of homogeneity and restrictions in the accessible composition range have to be accepted. [Pg.77]

By combining thermodynamically-based monomer partitioning relationships for saturation [170] and partial swelling [172] with mass balance equations, Noel et al. [174] proposed a model for saturation and a model for partial swelling that could predict the mole fraction of a specific monomer i in the polymer particles. They showed that the batch emulsion copolymerization behavior predicted by the models presented in this article agreed adequately with experimental results for MA-VAc and MA-Inden (Ind) systems. Karlsson et al. [176] studied the monomer swelling kinetics at 80 °C in Interval III of the seeded emulsion polymerization of isoprene with carboxylated PSt latex particles as the seeds. The authors measured the variation of the isoprene sorption rate into the seed polymer particles with the volume fraction of polymer in the latex particles, and discussed the sorption process of isoprene into the seed polymer particles in Interval III in detail from a thermodynamic point of view. [Pg.52]

The latex (polymer) particles are generated from the emulsifier micelles and the number of latex particles produced is proportional to the 0.70 power of the initial concentration of the emulsifier forming micelles and to the 0.30 power of the concentration of initially charged AIBN. This behavior is very similar to that observed when the water-soluble initiator KPS is used. The polymerization takes place both in the monomer droplets and in the latex particles produced. The polymerization inside the monomer droplets proceeds according to the kinetics of suspension polymerization until the... [Pg.59]

One normatty assumes that systems such as styrene and methyl methacrylate, where transfer to monomer is not prominent, follow Case 2 kinetics when latex particles are small and termination in polymer particles is instantaneous. It has recently been shown that at low initiation rates radical desorption can be significant relative to radical absorption, and as a consequence w values appreciably smaller than 0.5 were found (Gilbert et al., 1980). At higher initiation rates n = 0-5 was approached. The use of chain-transfer agents would of course increase the desorption rate and lower n. [Pg.324]

In the derivation of the kinetic relations it was assumed that free radicals enter the particles one by one the initiation process just described satisfies this condition. This is not the case when radicals are formed by thermal decomposition of an oil-soluble initiator. Such decomposition produces pairs of radicals in the hydrocarbon phase. One would expect a pair of radicals, confined to the extremely small volume of a latex particle, to recombine rapidly. The kinetics of this type of polymerization have been described above. It is recalled here that the subdivision factor, z, and hence rate and degree of polymerization are smaller than 1 and decrease with a. These predictions from kinetic theory are in contradiction to experimental observations. Although some oil-soluble initiators, which are good catalysts in solution systems, are poor initiators in emulsion polymerizations—e.g., benzoyl peroxide—other thermally decomposing peroxides and azo compounds produce polymer in emulsion at rates comparable to those observed in polymerization initiated by water-soluble catalysts, where the radicals enter the particles one by one. Such is the case for cumene hydroperoxide, which at low concentrations yields a rate of polymerization per particle equal to that of a persulfate-initiated reaction. It must therefore be concluded that, although oil-soluble initiators may decompose into radical pairs within the particles, polymer radicals are formed one by one. The following mechanisms are consistent with formation of polymer radicals singly. [Pg.20]

The term zero-one designates that all latex particles contain either zero or one active free radical. The entry of a radical in a particle that already contains a free radical will instantaneously cause termination. Thus, the maximum value of the average number of radicals per particle, n, is 0.5. In a zero-one system, compartmentalization plays a crucial role in the kinetic events of emulsion polymerization processes. In fact, a radical in one particle will have no access to a radical in another particle without the intervention of a phase transfer event. Two radicals in proximity will terminate rapidly however, the rate of termination will be reduced in the process because of compartmentalization, as the radicals are isolated as separate particles. Consequently, the propagation rate is higher and the molecular weight of the polymer formed is larger than in the corresponding bulk systems. Which model is more appropriate depends primarily on the particle size. Small particles tend to satisfy the zero-one model, as termination is likely to be instantaneous. ... [Pg.870]

Aqueous dispersions of poly(vinyl acetate) and vinyl acetate-ethylene copolymers, homo- and copolymers of acrylic monomers, and styrene-butadiene copolymers are the most important types of polymer latexes today. Applications include paints, coatings, adhesives, paper manufacturing, leather manufacturing, textiles and other industries. In addition to emulsion polymerization, other aqueous free-radical polymerizations are applied on a large scale. In suspension polymerization a water-irnrniscible olefinic monomer is also polymerized. However, by contrast to emulsion polymerization a monomer-soluble initiator is employed, and usually no surfactant is added. Polymerization occurs in the monomer droplets, with kinetics similar to bulk polymerization. The particles obtained are much larger (>15 pm) than in emulsion polymerization, and they do not form stable latexes but precipitate during polymerization (Scheme 7.2). [Pg.234]


See other pages where Polymer latex particles, kinetics is mentioned: [Pg.2339]    [Pg.128]    [Pg.14]    [Pg.231]    [Pg.239]    [Pg.278]    [Pg.429]    [Pg.180]    [Pg.104]    [Pg.109]    [Pg.407]    [Pg.409]    [Pg.429]    [Pg.176]    [Pg.60]    [Pg.68]    [Pg.73]    [Pg.213]    [Pg.79]    [Pg.198]    [Pg.341]    [Pg.152]    [Pg.266]    [Pg.197]    [Pg.146]    [Pg.168]    [Pg.105]    [Pg.110]    [Pg.113]    [Pg.122]   


SEARCH



Kinetics particles

Latex particles

Polymer kinetics

Polymer latex particles

Polymer particles

© 2024 chempedia.info